
Bellerophon: Tactical Theorem
Proving for Hybrid Systems

Nathan Fulton, Stefan Mitsch, Brandon Bohrer, André Platzer
Carnegie Mellon University

Cyber-Physical Systems

Cyber-Physical Systems combine computation and
control.

Hybrid Systems model combinations of discrete and
continuous dynamics.

Bellerophon

Verifying hybrid systems is hard.

Bellerophon

Verifying hybrid systems is hard.
Bellerophon demonstrates how to tackle
hybrid systems with tactics:

Bellerophon

Verifying hybrid systems is hard.
Bellerophon demonstrates how to tackle
hybrid systems with tactics:
● Build on a sound core.

Bellerophon

Verifying hybrid systems is hard.
Bellerophon demonstrates how to tackle
hybrid systems with tactics:
● Build on a sound core.
● Implement high-level primitives for hybrid

systems proofs.

Bellerophon

Verifying hybrid systems is hard.
Bellerophon demonstrates how to tackle
hybrid systems with tactics:
● Build on a sound core.
● Implement high-level primitives for hybrid

systems proofs.
● Automate common constructions (for

ODEs and control software)

Theorem Bellerophon
LOC

Conceptual Proof
Steps

Hybrid Systems
Axiom Applications

Static Safety 12 71 30,355

Passive-Friendly
Safety

45 140 68,620

Orientation Safety 15 108 173,989

Pass Intersection
Liveness

234 440 61,878

Bellerophon

KeYmaera X: Trustworthy Foundations

Interactive Reachability Analysis
➢ Bellerophon combinator language
➢ Bellerophon standard library for hybrid systems
➢ Demonstration

Bellerophon for Automation and Tooling

Conclusions & Resources

Trustworthy Foundations

KeYmaera X enables trustworthy
automation for hybrid systems
analysis:
● A well-defined logical foundations,
● implemented in a small trustworthy core
● that ensures correctness of automation and tooling.

Trustworthy Foundations
Hybrid Programs

a := t a=a0
b=b0
c=c0

...

a=t
b=b0
c=c0

...

Trustworthy Foundations
Hybrid Programs

a := t a=a0
b=b0
c=c0

...

a=t
b=b0
c=c0

...

a;b
a;b

a b

Trustworthy Foundations
Hybrid Programs

a := t

?P

a=a0
b=b0
c=c0

...

a=t
b=b0
c=c0

...

a;b
a;b

a b

If P is true: no change

If P is false: terminate

Trustworthy Foundations
Hybrid Programs

a := t

a∪b
?P

a=a0
b=b0
c=c0

...

a=t
b=b0
c=c0

...

a;b
a;b

a b

If P is true: no change

If P is false: terminate

Trustworthy Foundations
Hybrid Programs

a := t

a∪b
?P

a=a0
b=b0
c=c0

...

a=t
b=b0
c=c0

...

a;b
a;b

a b

If P is true: no change

If P is false: terminate

Trustworthy Foundations
Hybrid Programs

a := t

a∪b
?P

a=a0
b=b0
c=c0

...

a=t
b=b0
c=c0

...

a;b
a;b

a b

If P is true: no change

If P is false: terminate

a* a ...a...

Trustworthy Foundations
Hybrid Programs

a := t

a∪b
?P

a=a0
b=b0
c=c0

...

a=t
b=b0
c=c0

...

a;b
a;b

a b

If P is true: no change

If P is false: terminate

a* x’=f x=x0
...

x=F(0)
...

x=F(T)
...

⋮a ...a...

Trustworthy Foundations
Reachability Specifications

[a]P “after every execution of a, P”
<a>P “after some execution of a, P”

Trustworthy Foundations
Reachability Specifications

[a]P “after every execution of a, P”
<a>P “after some execution of a, P”

init → [{x := u(x); x’ = f(x)}*]safe

Trustworthy Foundations
Hello, World

{
{?Dive ∪ r := rp};
t:=0;

 {x’ = v,
 V’ = f(v,g,r), t’=1
 & 0≤x & t≤T}

}*
Control: Continue diving if safe, else open parachute.
Plant: Downward velocity determined by gravity, air resistance.

x
v’=f(v,g,r)

Trustworthy Foundations
Hello, World

{
{?Dive ∪ r := rp};
t:=0;

 {x’ = v,
 V’ = f(v,g,r), t’=1
 & 0≤x & t≤T}

}*
Control: Continue diving if safe, else open parachute.
Plant: Downward velocity determined by gravity, air resistance.

x
v’=f(v,g,r)

Trustworthy Foundations
Hello, World

{
{?Dive ∪ r := rp};
t:=0;

 {x’ = v,
 V’ = f(v,g,r), t’=1
 & 0≤x & t≤T}

}*
Control: Continue diving if safe, else open parachute.
Plant: Downward velocity determined by gravity, air resistance.

x
v’=f(v,g,r)

Trustworthy Foundations
Hello, World

{
{?Dive ∪ r := rp};
t:=0;

 {x’ = v,
 V’ = f(v,g,r), t’=1
 & 0≤x & t≤T}

}*
Control: Continue diving if safe, else open parachute.
Plant: Downward velocity determined by gravity, air resistance.

x
v’=f(v,g,r)

Trustworthy Foundations
Hello, World

{
{?Dive ∪ r := rp};
t:=0;

 {x’ = v,
 V’ = f(v,g,r), t’=1
 & 0≤x & t≤T}

}*
Control: Continue diving if safe, else open parachute.
Plant: Downward velocity determined by gravity, air resistance.

x
v’=f(v,g,r)

Trustworthy Foundations
Hello, World

{
{?Dive ∪ r := rp};
t:=0;

 {x’ = v,
 V’ = f(v,g,r), t’=1
 & 0≤x & t≤T}

}*
Control: Continue diving if safe, else open parachute.
Plant: Downward velocity determined by gravity, air resistance.

x
v’=f(v,g,r)

(Dive & g>0 & …)→
[{
{?Dive ∪ r := rp};

 {x’ = v,
 V’ = f(v,g,r)
 & 0≤x}

}*](x=0→m≤v)
x v’=f(v,g,r)

Trustworthy Foundations
Reachability Specifications

(Dive & g>0 & …)→
[{
{?Dive ∪ r := rp};

 {x’ = v,
 V’ = f(v,g,r)
 & 0≤x}

}*](x=0→m≤v)
x v’=f(v,g,r)

If the parachuter is on the ground, their speed is safe (m≤v≤0)

Trustworthy Foundations
Reachability Specifications

Introduction to Differential Dynamic Logic
Dynamical Axioms

[x:=t]f(x) ↔ f(t)
[a;b]P ↔ [a][b]P
[a∪b]P ↔ ([a]P & [b]P)
[x’=f&Q]P → (Q → P)
...

Introduction to Differential Dynamic Logic
Trusted Core

[x:=t]f(x) ↔ f(t)
[a;b]P ↔ [a][b]P
[a∪b]P ↔ ([a]P & [b]P)
[x’=f&Q]P → (Q → P)
...

AXIOM BASE

KeYmaera X Core Q.E.D.

Introduction to Differential Dynamic Logic
Trustworthy Implementations

[x:=t]f(x) ↔ f(t)
[a;b]P ↔ [a][b]P
[a∪b]P ↔ ([a]P & [b]P)
[x’=f&Q]P → (Q → P)
...

AXIOM BASE

KeYmaera X Core Q.E.D.

Bellerophon Tooling Automated
Analyses

Introduction to Differential Dynamic Logic
Prover Core Comparison

Bellerophon

Bellerophon enables interactive
verification and tool development:

Bellerophon

Bellerophon enables interactive
verification and tool development:
● A standard library of common proof

techniques.

Bellerophon

Bellerophon enables interactive
verification and tool development:
● A standard library of common proof

techniques.
● A combinator language/library for

decomposing theorems and composing
proof strategies.

Bellerophon
Standard Library

Tactic Meaning

prop Applies propositional reasoning exhaustively.

unfold Symbolically executes discrete, loop-free programs.

loop(J, i) Applies loop invariance axiom to position i.

dI,dG,dC,dW Reasoning principles for differential equations.

Bellerophon
Standard Library

Tactic Meaning

prop Applies propositional reasoning exhaustively.

unfold Symbolically executes discrete, loop-free programs.

loop(J, i) Applies loop invariance axiom to position i.

dI,dG,dC,dW Reasoning principles for differential equations.

1000+

Bellerophon
Combinators

Combinator Meaning

A ; B Execute A on current goal, then execute B on the result.

A | B Try executing A on current goal. If A fails, execute B on current goal.

A* Run A until it no longer applies.

A<(B1,B2, … ,BN) Execute A on current goal to create N subgoals. Run Bi on subgoal i.

Tactic Meaning

prop Applies propositional reasoning exhaustively.

unfold Symbolically executes discrete, loop-free programs.

loop(J, i) Applies loop invariance axiom to position i, extends J with constants.

dI,dG,dC,dW Reasoning principles for differential equations.

1000+

Bellerophon
Isolating Interesting Questions

(Dive & g>0
& …)→
[{

}*](x=0→m≤v)

Bellerophon
Isolating Interesting Questions

(Dive & g>0
& …)→
[{

}*](x=0→m≤v)

prop ; loop(J,1)

(Dive &
g>0 &
…)→
J

J →
x=0→m≤v

J→[

]J

Loop invariant holds initially

Loop invariant is preserved

Loop invariant implies safety

Bellerophon
Isolating Interesting Questions

(Dive & g>0
& …)→
[{

}*](x=0→m≤v)

prop ; loop(J,1)

(Dive &
g>0 &
…)→
J

J →
x=0→m≤v

J→[

]J

Loop invariant holds initially

Loop invariant is preserved

Loop invariant implies safety

Bellerophon
Isolating Interesting Questions

(Dive & g>0
& …)→
[{

}*](x=0→m≤v)

prop ; loop(J,1)

(Dive &
g>0 &
…)→
J

J →
x=0→m≤v

J→[

]J

unfold

J & Dive & r=ra→
[x’=v,v’=...]J

J & r=rp→
[x’=v,v’=...]J

Bellerophon
Isolating Interesting Questions

(Dive & g>0
& …)→
[{

}*](x=0→m≤v)

prop ; loop(J,1)

(Dive &
g>0 &
…)→
J

J →
x=0→m≤v

J→[

]J

unfold

J & Dive & r=ra→
[x’=v,v’=...]J

J & r=rp→
[x’=v,v’=...]J

Bellerophon
Isolating Interesting Questions

prop ; loop(J, 1) <(
 QE, /* Real arith. solver */
 QE,
 unfold ; <(
 … /* parachute open case */
 … /* parachute closed case */
)
)

Interactive Verification in Bellerophon
Trustworthy Standard Library at High Abstraction Level

J → [{ctrl; plant}*]J
J = v > -sqrt(g/pr) > m & …

Parachute Open Case:
v ≥ v0 - gt
 ≥ v0 - gT
 > -sqrt(g/pr)

x v’=rv2-g
Inductive invariants

Interactive Verification in Bellerophon
From Axioms to Proof Steps

DI Axiom:
[{x'=f&Q}]P↔([?Q]P←(Q→[{x'=f&Q}]P'))

Interactive Verification in Bellerophon
From Axioms to Proof Steps

DI Axiom:
[{x'=f&Q}]P↔([?Q]P←(Q→[{x'=f&Q}]P'))

Example:
[v’=rpv

2-g,t’=1]v ≥ v0 - gt

Interactive Verification in Bellerophon
From Axioms to Proof Steps

DI Axiom:
[{x'=f&Q}]P↔([?Q]P←(Q→[{x'=f&Q}]P'))

Example:
[v’=rpv

2-g,t’=1]v ≥ v0 - gt ↔
… ↔
[v’:=rpv

2-g][t’:=1]v’ ≥ -g*t’ ↔
rpv

2-g ≥ -g ↔
rp≥0

Interactive Verification in Bellerophon
From Axioms to Proof Steps

DI Axiom:
[{x'=f&Q}]P↔([?Q]P←(Q→[{x'=f&Q}]P'))

Example:
[v’=rpv

2-g,t’=1]v ≥ v0 - gt ↔
… ↔
[v’:=rpv

2-g][t’:=1]v’ ≥ -g*t’ ↔
rpv

2-g ≥ -g ↔
H→rp≥0

Side derivation:
(v ≥ v0 - gt)’ ↔
(v)’≥ (v0 - gt)’ ↔
(v)’≥ (v0 - gt)’ ↔
(v)’≥ (v0)’-(gt) ’ ↔
(v)’≥(v0)’- (t(g)’+g(t’)) ↔

V’ ≥v0’- (tg’+gt’)

dI Tactic:

H=rp≥0 & ra≥0 & g>0 & ...

Automation and Tooling

Hybrid Systems Analyses can be built
on top of KeYmaera X.

Examples:
● ODE Solver
● Runtime Monitoring

Automation and Tooling
Solving Differential Equations

[x:=t]f(x) ↔ f(t)
[a;b]P ↔ [a][b]P
[a∪b]P ↔ ([a]P & [b]P)
[a*]P ↔ (J→P & J→[b]J)
[x’=f&Q]P → (Q → P)
...

AXIOM BASE

KeYmaera X Core Q.E.D.

Untrusted ODE Solver

Axiomatic Solver
(Bellerophon Program)

1. Use untrusted code
to find a conjecture.

2. Prove the conjecture
systematically,
leveraging standard
library.

Automation and Tooling
Solving Differential Equations

[x:=t]f(x) ↔ f(t)
[a;b]P ↔ [a][b]P
[a∪b]P ↔ ([a]P & [b]P)
[a*]P ↔ (J→P & J→[b]J)
[x’=f&Q]P → (Q → P)
...

AXIOM BASE

KeYmaera X Core Q.E.D.

Untrusted ODE Solver

Axiomatic Solver
(Bellerophon Program)

1. Use untrusted code
to find a conjecture.

2. Prove the conjecture
systematically,
leveraging standard
library.

Automation and Tooling
ModelPlex Tactic

Toward Automated Deduction
Other Proof Automation & Tooling

● Taylor Series
● Bifurcations
● Limit Cycles
● Numerical tools
● ...

[x:=t]f(x) ↔ f(t)
[a;b]P ↔ [a][b]P
[a∪b]P ↔ ([a]P & [b]P)
[a*]P ↔ (J→P & J→[b]J)
[x’=f&Q]P → (Q → P)
...

AXIOM BASE

KeYmaera X Core Q.E.D.

ODE & Controls Tooling

Clever Bellerophon Programs

Toward Automated Deduction
Other Proof Automation & Tooling

● Taylor Series
● Bifurcations
● Limit Cycles
● Numerical tools
● ...

[x:=t]f(x) ↔ f(t)
[a;b]P ↔ [a][b]P
[a∪b]P ↔ ([a]P & [b]P)
[a*]P ↔ (J→P & J→[b]J)
[x’=f&Q]P → (Q → P)
...

AXIOM BASE

KeYmaera X Core Q.E.D.

ODE & Controls Tooling

Clever Bellerophon Programs

Other Tooling:
● Component-based

Verification
● Web UI

Conclusion

There is a wide gap between sound foundations for hybrid
systems and practical interactive theorem proving
technology for cyber-physical systems verification.

Conclusion

There is a wide gap between sound foundations for hybrid
systems and practical interactive theorem proving
technology for cyber-physical systems verification.

Bellerophon demonstrates how to verify hybrid systems using
tactics.

Conclusion

There is a wide gap between sound foundations for hybrid
systems and practical interactive theorem proving
technology for cyber-physical systems verification.

Bellerophon demonstrates how to verify hybrid systems using
tactics.

Conclusion

There is a wide gap between sound foundations for hybrid
systems and practical interactive theorem proving
technology for cyber-physical systems verification.

Bellerophon demonstrates how to verify hybrid systems using
tactics.

DI Axiom:
[{x'=f&Q}]P↔([?Q]P←(Q→[{x'=f&Q}]P'))

Example:
[v’=rpv

2-g,t’=1]v ≥ v 0 - gt ↔
… ↔
[v’:=rpv

2-g][t’:=1]v’ ≥ -g*t’ ↔
rpv

2-g ≥ -g ↔
H→rp≥0

Side derivation:
(v ≥ v0 -
gt)’ ↔
...↔
...↔
...

dI Tactic:

H=rp≥0 & ra≥0
& g>0 & ...

Conclusion

There is a wide gap between sound foundations for hybrid
systems and practical interactive theorem proving
technology for cyber-physical systems verification.

Bellerophon demonstrates how to verify hybrid systems using
tactics.

DI Axiom:
[{x'=f&Q}]P↔([?Q]P←(Q→[{x'=f&Q}]P'))

Example:
[v’=rpv

2-g,t’=1]v ≥ v 0 - gt ↔
… ↔
[v’:=rpv

2-g][t’:=1]v’ ≥ -g*t’ ↔
rpv

2-g ≥ -g ↔
H→rp≥0

Side derivation:
(v ≥ v0 -
gt)’ ↔
...↔
...↔
...

dI Tactic:

H=rp≥0 & ra≥0
& g>0 & ...

Axioms KyX qed

ODE & Controls Tooling

Clever Bellerophon
Programs

Conclusion

There is a wide gap between sound foundations for hybrid
systems and practical interactive theorem proving
technology for cyber-physical systems verification.

Bellerophon demonstrates how to verify hybrid systems using
tactics.
Project Website (start here) keymaeraX.org

Online Demo web.keymaeraX.org

Open Source (GPL) github.com/ls-lab/KeYmaeraX-release

Thanks: 15-424 students, Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas et al.,
and many others!

Developers:
● Stefan Mitsch
● Nathan Fulton
● André Platzer
● Brandon Bohrer
● Jan-David Quesel
● Yong Kiam Tan
● Markus Völp

Interactive Reachability Analysis in KeYmaera X
Differential Ghosts

Parachute Closed:
J & t=0 & r=rp →
[x’=v,v’=rv2-g & 0≤x & t≤T]v>-sqrt(g/pr) > m

x v’=rv2-g

Proof requires a differential
ghost because the property is not
inductive.

Interactive Reachability Analysis in KeYmaera X
Differential Ghosts

An example differential ghost.

x>0 → [x’=-x]x>0

Interactive Reachability Analysis in KeYmaera X
Differential Ghosts

An example differential ghost.

x>0 → [x’=-x]x>0
Ghost: y’=y/2
Conserved: 1=xy2

Interactive Reachability Analysis in KeYmaera X
Differential Ghosts

An example differential ghost.

x>0 → [x’=-x]x>0
Ghost: y’=y/2
Conserved: 1=xy2

Notice:
x>0 ↔ ∃y.1=xy2
Therefore, suffices to show:
1=xy2→∃y.[x’=-x,y’=y/2]1=xy2

Introduction to Differential Dynamic Logic
Prover Core Comparison

Tool Trusted LOC (approx.)
KeYmaera X 1,682 (out of 100,000+)

KeYmaera 65,989

Isabelle/Pure 8,113

Coq 20,000

HSolver 20,000

dReal 50,000

SpaceEx 100,000

