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Cyber-Physical Systems

Cyber-Physical Systems combine computation and 
control.

Hybrid Systems model combinations of discrete and 
continuous dynamics.
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Bellerophon

Verifying hybrid systems is hard.
Bellerophon demonstrates how to tackle 
hybrid systems with tactics:
● Build on a sound core.
● Implement high-level primitives for hybrid 

systems proofs.
● Automate common constructions (for 

ODEs and control software)



Theorem Bellerophon 
LOC

Conceptual Proof 
Steps

Hybrid Systems 
Axiom Applications

Static Safety 12 71 30,355

Passive-Friendly 
Safety

45 140 68,620

Orientation Safety 15 108 173,989

Pass Intersection 
Liveness

234 440 61,878

Bellerophon



KeYmaera X: Trustworthy Foundations

Interactive Reachability Analysis
➢ Bellerophon combinator language 
➢ Bellerophon standard library for hybrid systems
➢ Demonstration

Bellerophon for Automation and Tooling

Conclusions & Resources



Trustworthy Foundations

KeYmaera X enables trustworthy 
automation for hybrid systems 
analysis:
● A well-defined logical foundations,
● implemented in a small trustworthy core
● that ensures correctness of automation and tooling.
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Trustworthy Foundations
Hybrid Programs

a := t

a∪b
?P

a=a0
b=b0
c=c0

...

a=t
b=b0
c=c0

...

a;b
a;b

a b

If P is true: no change

If P is false: terminate

a* x’=f x=x0
...

x=F(0)
...

x=F(T)
...

⋮a ...a...
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Reachability Specifications

[a]P “after every execution of a, P”
<a>P “after some execution of a, P”

init → [{x := u(x); x’ = f(x)}*]safe



Trustworthy Foundations
Hello, World

{
{?Dive ∪ r := rp};
t:=0;

  {x’ = v,
 V’ = f(v,g,r), t’=1 
 & 0≤x & t≤T}

}*
Control: Continue diving if safe, else open parachute.
Plant: Downward velocity determined by gravity, air resistance.

x
v’=f(v,g,r)
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(Dive & g>0 & …)→
[{
{?Dive ∪ r := rp};

  {x’ = v,
 V’ = f(v,g,r) 
 & 0≤x}

}*](x=0→m≤v)
x v’=f(v,g,r)
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(Dive & g>0 & …)→
[{
{?Dive ∪ r := rp};

  {x’ = v,
 V’ = f(v,g,r) 
 & 0≤x}

}*](x=0→m≤v)
x v’=f(v,g,r)

If the parachuter is on the ground, their speed is safe (m≤v≤0)

Trustworthy Foundations
Reachability Specifications



Introduction to Differential Dynamic Logic
Dynamical Axioms

[x:=t]f(x) ↔ f(t)
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[a∪b]P     ↔ ([a]P & [b]P)
[x’=f&Q]P  → (Q → P)
...
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Introduction to Differential Dynamic Logic
Trustworthy Implementations

[x:=t]f(x) ↔ f(t)
[a;b]P     ↔ [a][b]P
[a∪b]P ↔ ([a]P & [b]P)
[x’=f&Q]P  → (Q → P)
...

AXIOM BASE

KeYmaera X Core Q.E.D.

Bellerophon Tooling Automated 
Analyses



Introduction to Differential Dynamic Logic
Prover Core Comparison
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Bellerophon

Bellerophon enables interactive 
verification and tool development:
● A standard library of common proof 

techniques.
● A combinator language/library for 

decomposing theorems and composing 
proof strategies.



Bellerophon
Standard Library

Tactic Meaning

prop Applies propositional reasoning exhaustively.

unfold Symbolically executes discrete, loop-free programs.

loop(J, i) Applies loop invariance axiom to position i.

dI,dG,dC,dW Reasoning principles for differential equations.
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Bellerophon
Combinators

Combinator Meaning

A ; B Execute A on current goal, then execute B on the result.

A | B Try executing A on current goal. If A fails, execute B on current goal.

A* Run A until it no longer applies.

A<( B1,B2, … ,BN ) Execute A on current goal to create N subgoals. Run Bi on subgoal i.

Tactic Meaning

prop Applies propositional reasoning exhaustively.

unfold Symbolically executes discrete, loop-free programs.

loop(J, i) Applies loop invariance axiom to position i, extends J with constants.

dI,dG,dC,dW Reasoning principles for differential equations.

1000+
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(Dive & g>0 
& …)→
[{

}*](x=0→m≤v)

prop ; loop(J,1)
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Bellerophon
Isolating Interesting Questions

prop ;  loop(J, 1) <(
  QE, /* Real arith. solver */
  QE,
  unfold ; <(
    … /* parachute open case */
    … /* parachute closed case */
  )
)



Interactive Verification in Bellerophon
Trustworthy Standard Library at High Abstraction Level

J → [{ctrl; plant}*]J
J = v > -sqrt(g/pr) > m & …

Parachute Open Case:
v ≥ v0 - gt 
  ≥ v0 - gT 
  > -sqrt(g/pr)

x v’=rv2-g
Inductive invariants
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From Axioms to Proof Steps
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Interactive Verification in Bellerophon
From Axioms to Proof Steps

DI Axiom:
[{x'=f&Q}]P↔([?Q]P←(Q→[{x'=f&Q}]P'))

Example:
[v’=rpv

2-g,t’=1]v ≥ v0 - gt    ↔
…                             ↔
[v’:=rpv

2-g][t’:=1]v’ ≥ -g*t’  ↔
rpv

2-g ≥ -g                    ↔
H→rp≥0

Side derivation:
(v  ≥ v0 - gt)’    ↔
(v)’≥ (v0 - gt)’   ↔
(v)’≥ (v0 - gt)’   ↔
(v)’≥ (v0)’-(gt) ’ ↔
(v)’≥(v0)’- (t(g)’+g(t’))  ↔

V’  ≥v0’- (tg’+gt’)

dI Tactic:

H=rp≥0 & ra≥0 & g>0 & ...



Automation and Tooling

Hybrid Systems Analyses can be built 
on top of KeYmaera X.

Examples:
● ODE Solver
● Runtime Monitoring



Automation and Tooling
Solving Differential Equations

[x:=t]f(x) ↔ f(t)
[a;b]P ↔ [a][b]P
[a∪b]P ↔ ([a]P & [b]P)
[a*]P ↔ (J→P  & J→[b]J)
[x’=f&Q]P  → (Q → P)
...

AXIOM BASE

KeYmaera X Core Q.E.D.

Untrusted ODE Solver

Axiomatic Solver
(Bellerophon Program)

1. Use untrusted code 
to find a conjecture.

2. Prove the conjecture 
systematically, 
leveraging standard 
library.
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Axiomatic Solver
(Bellerophon Program)

1. Use untrusted code 
to find a conjecture.

2. Prove the conjecture 
systematically, 
leveraging standard 
library.



Automation and Tooling
ModelPlex Tactic



Toward Automated Deduction
Other Proof Automation & Tooling

● Taylor Series
● Bifurcations
● Limit Cycles
● Numerical tools
● ...
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Toward Automated Deduction
Other Proof Automation & Tooling

● Taylor Series
● Bifurcations
● Limit Cycles
● Numerical tools
● ...

[x:=t]f(x) ↔ f(t)
[a;b]P ↔ [a][b]P
[a∪b]P ↔ ([a]P & [b]P)
[a*]P ↔ (J→P  & J→[b]J)
[x’=f&Q]P  → (Q → P)
...

AXIOM BASE

KeYmaera X Core Q.E.D.

ODE & Controls Tooling

Clever Bellerophon Programs

Other Tooling:
● Component-based 

Verification
● Web UI
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Conclusion

There is a wide gap between sound foundations for hybrid 
systems and practical interactive theorem proving 
technology for cyber-physical systems verification.

Bellerophon demonstrates how to verify hybrid systems using 
tactics.

DI Axiom:
[{x'=f&Q}]P↔([?Q]P←(Q→[{x'=f&Q}]P'))

Example:
[v’=rpv

2-g,t’=1]v ≥ v 0 - gt    ↔
…                             ↔
[v’:=rpv

2-g][t’:=1]v’ ≥ -g*t’  ↔
rpv

2-g ≥ -g                    ↔
H→rp≥0

Side derivation:
(v  ≥ v0 - 
gt)’ ↔
...↔
...↔
...

dI Tactic:

H=rp≥0 & ra≥0 
& g>0 & ...

Axioms KyX qed

ODE & Controls Tooling

Clever Bellerophon 
Programs



Conclusion

There is a wide gap between sound foundations for hybrid 
systems and practical interactive theorem proving 
technology for cyber-physical systems verification.

Bellerophon demonstrates how to verify hybrid systems using 
tactics.
Project Website (start here) keymaeraX.org

Online Demo web.keymaeraX.org

Open Source (GPL) github.com/ls-lab/KeYmaeraX-release

Thanks: 15-424 students, Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas et al., 
and many others!



Developers: 
● Stefan Mitsch
● Nathan Fulton
● André Platzer
● Brandon Bohrer
● Jan-David Quesel
● Yong Kiam Tan
● Markus Völp





Interactive Reachability Analysis in KeYmaera X
Differential Ghosts

Parachute Closed:
J & t=0 & r=rp →
[x’=v,v’=rv2-g & 0≤x & t≤T]v>-sqrt(g/pr) > m

x v’=rv2-g

Proof requires a differential 
ghost because the property is not 
inductive.
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An example differential ghost.

x>0 → [x’=-x]x>0
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Interactive Reachability Analysis in KeYmaera X
Differential Ghosts

An example differential ghost.

x>0 → [x’=-x]x>0
Ghost:     y’=y/2
Conserved: 1=xy2

Notice:
x>0 ↔ ∃y.1=xy2 
Therefore, suffices to show:
1=xy2→∃y.[x’=-x,y’=y/2]1=xy2



Introduction to Differential Dynamic Logic
Prover Core Comparison

Tool Trusted LOC (approx.)
KeYmaera X 1,682 (out of 100,000+)

KeYmaera 65,989

Isabelle/Pure 8,113

Coq 20,000

HSolver 20,000

dReal 50,000

SpaceEx 100,000


