
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

Verifiably Safe Off-Model
Reinforcement Learning?

Nathan Fulton and André Platzer

Computer Science Department, Carnegie Mellon University
Pittsburgh, USA

{nathanfu, aplatzer}@cs.cmu.edu

Abstract. The desire to use reinforcement learning in safety-critical
settings has inspired a recent interest in formal methods for learning
algorithms. Existing formal methods for learning and optimization pri-
marily consider the problem of constrained learning or constrained opti-
mization. Given a single correct model and associated safety constraint,
these approaches guarantee efficient learning while provably avoiding be-
haviors outside the safety constraint. Acting well given an accurate en-
vironmental model is an important pre-requisite for safe learning, but is
ultimately insufficient for systems that operate in complex heterogeneous
environments. This paper ingitroduces verification-preserving model up-
dates, the first approach toward obtaining formal safety guarantees for
reinforcement learning in settings where multiple possible environmental
models must be taken into account. Through a combination of induc-
tive data and deductive proving with design-time model updates and
runtime model falsification, we provide a first approach toward obtain-
ing formal safety proofs for autonomous systems acting in heterogeneous
environments.

1 Introduction

The desire to use reinforcement learning in safety-critical settings has inspired
several recent approaches toward obtaining formal safety guarantees for learning
algorithms. Formal methods are particularly desirable in settings such as self-
driving cars, where testing alone cannot guarantee safety [22]. Recent examples of
work on formal methods for reinforcement learning algorithms include justified
speculative control [14], shielding [3], logically constrained learning [17], and
constrained Bayesian optimization [16]. Each of these approaches provide formal
safety guarantees for reinforcement learning and/or optimization algorithms by
stating assumptions and specifications in a formal logic, generating monitoring
conditions based upon specifications and environmental assumptions, and then

? This research was sponsored by the Defense Advanced Research Projects Agency
(DARPA) under grant number FA8750-18-C-0092. The views and conclusions con-
tained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring in-
stitution, the U.S. government or any other entity.

2 Nathan Fulton and André Platzer

leveraging these monitoring conditions to constrain the learning/optimization
process to a known-safe subset of the state space.

Existing formal methods for learning and optimization consider the problem
of constrained learning or constrained optimization [3,14,16,17]. They address
the question: assuming we have a single accurate environmental model with a
given specification, how can we learn an efficient control policy respecting this
specification?

Correctness proofs for control software in a single well-modeled environment
are necessary but not sufficient for ensuring that reinforcement learning al-
gorithms behave safely. Modern cyber-physical systems must perform a large
number of subtasks in many different environments and must safely cope with
situations that are not anticipated by system designers. These design goals moti-
vate the use of reinforcement learning in safety-critical systems. Although some
formal methods suggest ways in which formal constraints might be used to in-
form control even when modeling assumptions are violated [14], none of these
approaches provide formal safety guarantees when environmental modeling as-
sumptions are violated.

Holistic approaches toward safe reinforcement learning should provide formal
guarantees even when a single, a priori model is not known at design time. We
call this problem verifiably safe off-model learning. In this paper we introduce a
first approach toward obtaining formal safety proofs for off-model learning. Our
approach consists of two components: (1) a model synthesis phase that constructs
a set of candidate models together with provably correct control software, and
(2) a runtime model identification process that selects between available models
at runtime in a way that preserves the safety guarantees of all candidate models.

Model update learning is initialized with a set of models. These models consist
of a set of differential equations that model the environment, a control program
for selecting actuator inputs, a safety property, and a formal proof that the
control program constrains the overall system dynamics in a way that correctly
ensures the safety property is never violated.

Instead of requiring the existence of a single accurate initial model, we in-
troduce model updates as syntactic modifications of the differential equations
and control logic of the model. We call a model update verification-preserving
if there is a corresponding modification to the formal proof establishing that
the modified control program continues to constrain the system of differential
equations in a way that preserves the original model’s safety properties.

Verification-preserving model updates are inspired by the fact that different
parts of a model serve different roles. The continuous portion of a model is often
an assumption about how the world behaves, and the discrete portion of a model
is derived from these equations and the safety property. For this reason, many of
our updates inductively synthesize ODEs (i.e., in response to data from previous
executions of the system) and then deductively synthesize control logic from the
resulting ODEs and the safety objective.

Our contributions enabling verifiably safe off-model learning include: (1) A
set of verification preserving model updates (VPMUs) that systematically up-

Verifiably Safe Off-Model Reinforcement Learning 3

date differential equations, control software, and safety proofs in a way that
preserves verification guarantees while taking into account possible deviations
between an initial model and future system behavior. (2) A reinforcement learn-
ing algorithm, called model update learning (µlearning), that explains how to
transfer safety proofs for a set of feasible models to a learned policy. The learned
policy will actively attempt to falsify models at runtime in order to reduce the
safety constraints on actions. These contributions are evaluated on a set of hy-
brid systems control tasks. Our approach uses a combination of program repair,
system identification, offline theorem proving, and model monitors to obtain for-
mal safety guarantees for systems in which a single accurate model is not known
at design time. This paper fully develops an approach based on an idea that was
first presented in an invited vision paper on Safe AI for CPS by the authors [13].

The approach described in this paper is model-based but does not assume
that a single correct model is known at design time. Model update learning
allows for the possibility that all we can know at design time is that there are
many feasible models, one of which might be accurate. Verification-preserving
model updates then explain how a combination of data and theorem proving can
be used at design time to enrich the set of feasible models.

We believe there is a rich space of approaches toward safe learning in-between
model-free reinforcement learning (where formal safety guarantees are unavail-
able) and traditional model-based learning that assumes the existence of a single
ideal model. This paper provides a first example of such an approach by lever-
aging inductive data and deductive proving at both design time and runtime.

The remainder of this paper is organized as follows. We first review the
logical foundations underpinning our approach. We then introduce verification-
preserving model updates and discuss how experimental data may be used to
construct a set of explanatory models for the data. After discussing several model
updates, we introduce the µlearning algorithm that selects between models at
runtime. Finally, we discuss case studies that validate both aspects of our ap-
proach. We close with a discussion of related work.

2 Background

This section reviews existing approaches toward safe on-model learning and dis-
cusses the fitness of each approach for obtaining guarantees about off-model
learning. We then introduce the specification language and logic used through-
out the rest of this paper.

Alshiekh et al. and Hasanbeig et al. propose approaches toward safe reinforce-
ment learning based on Linear Temporal Logic [3,17]. Alshiekh et al. synthesize
monitoring conditions based upon a safety specification and an environmental
abstraction. In this formalism, the goal of off-model learning is to systemat-
ically expand the environmental abstraction based upon both design-time in-
sights about how the system’s behavior might change over time and based upon
observed data at runtime. Jansen et al. extend the approach of Alshiekh et al.
by observing that constraints should adapt whenever runtime data suggests that

4 Nathan Fulton and André Platzer

a safety constraint is too restrictive to allow progress toward an over-arching ob-
jective [20]. Herbert et al. address the problem of safe motion planning by using
offline reachability analysis of pursuit-evasion games to pre-compute an overap-
proximate monitoring condition that then constrains online planners [9,19].

The above-mentioned approaches have an implicit or explicit environmen-
tal model. Even when these environmental models are accurate, reinforcement
learning is still necessary because these models focus exclusively on safety and
are often nondeterministic. Resolving this nondeterminism in a way that is not
only safe but is also effective at achieving other high-level objectives is a task
that is well-suited to reinforcement learning.

We are interested in how to provide formal safety guarantees even when
there is not a single accurate model available at design time. Achieving this goal
requires two novel contributions. We must first find a way to generate a robust
set of feasible models given some combination of an initial model and data on
previous runs of the system (because formal safety guarantees are stated with
respect to a model). Given such a set of feasible models, we must then learn
how to safely identify which model is most accurate so that the system is not
over-constrained at runtime.

To achieve these goals, we build on the safe learning work for a single model
by Fulton et al. [14]. We choose this approach as a basis for verifiably safe learning
because we are interested in safety-critical systems that combine discrete and
continuous dynamics, because we would like to produce explainable models of
system dynamics (e.g., systems of differential equations as opposed to large state
machines), and, most importantly, because our approach requires the ability to
systematically modify a model together with that model’s safety proof.

Following [14], we recall Differential Dynamic Logic [26,27], a logic for verify-
ing properties about safety-critical hybrid systems control software, the Model-
Plex synthesis algorithm in this logic [25], and the KeYmaera X theorem prover
[12] that will allow us to systematically modify models and proofs together.

Hybrid (dynamical) systems [4,27] are mathematical models that incorporate
both discrete and continuous dynamics. Hybrid systems are excellent models for
safety-critical control tasks that combine the discrete dynamics of control soft-
ware with the continuous motion of a physical system such as an aircraft, train, or
automobile. Hybrid programs [26,27,28] are a programming language for hybrid
systems. The syntax and informal semantics of hybrid programs is summarized
in Table 1. The continuous evolution program is a continuous evolution along
the differential equation system x′i = θi for an arbitrary duration within the
region described by formula F .

Hybrid Program Semantics The semantics of the hybrid programs described by
Table 1 are given in terms of transitions between states [27,28], where a state s
assigns a real number s(x) to each variable x. We use sJtK to refer to the value
of a term t in a state s. The semantics of a program α, written JαK, is the set
of pairs (s1, s2) for which state s2 is reachable by running α from state s1. For

Verifiably Safe Off-Model Reinforcement Learning 5

Table 1. Hybrid Programs

Program Statement Meaning

α;β Sequentially composes β after α.
α ∪ β Executes either α or β nondeterministically.
α∗ Repeats α zero or more times nondeterministically.
x := θ Evaluates term θ and assigns result to variable x.
x := ∗ Nondeterministically assign arbitrary real value to x.
{x′1 = θ1, ..., x

′
n = θn&F} Continuous evolution for any duration within domain F .

?F Aborts if formula F is not true.

example, Jx := t1 ∪ x := t2K is:

{(s1, s2) | s1=s2 except s2(x)=s1Jt1K} ∪ {(s1, s2) | s1=s2 except s2(x)=s1Jt2K}

for a hybrid program α and state s where JαK(s) is set of all states t such that
(s, t) ∈ JαK.

Differential Dynamic Logic Differential dynamic logic (dL) [26,27,28] is the dy-
namic logic of hybrid programs. The logic associates with each hybrid program
α modal operators [α] and 〈α〉, which express state reachability properties of α.
The formula [α]φ states that the formula φ is true in all states reachable by the
hybrid program α, and the formula 〈α〉φ expresses that the formula φ is true
after some execution of α. The dL formulas are generated by the grammar

φ ::= θ1 v θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ| [α]φ | 〈α〉φ

where θi are arithmetic expressions over the reals, φ and ψ are formulas, α
ranges over hybrid programs, and v is a comparison operator =, 6=,≥, >,≤, <.
The quantifiers quantify over the reals. We denote by s |= φ the fact that formula
φ is true in state s; e.g., we denote by s |= [α]φ the fact that (s, t) ∈ JαK implies
t |= φ for all states t. Similarly, ` φ denotes the fact that φ has a proof in dL.
When φ is true in every state (i.e., valid) we simply write |= φ.

Example 1 (Safety specification for straight-line car model).

v≥0 ∧A>0︸ ︷︷ ︸
initial condition

→ [
(

(a:=A ∪ a:=0)︸ ︷︷ ︸
ctrl

; {p′=v, v′=a}︸ ︷︷ ︸
plant

)∗
] v≥0︸︷︷︸
post cond.

This formula states that if a car begins with a non-negative velocity, then
it will also always have a non-negative velocity after repeatedly choosing new
acceleration (A or 0), or coasting and moving for a nondeterministic period of
time.

Throughout this paper, we will refer to sets of actions. An action is simply
the effect of a loop-free deterministic discrete program without tests. For exam-
ple, the programs a:=A and a:=0 are the actions available in the above program.
Notice that actions can be equivalently thought of as mappings from variables

6 Nathan Fulton and André Platzer

to terms. We use the term action to refer to both the mappings themselves and
the hybrid programs whose semantics correspond to these mappings. For an ac-
tion u, we write u(s) to mean the effect of taking action u in state s; i.e., the
unique state t such that (s, t) ∈ JuK.

ModelPlex Safe off-model learning requires noticing when a system deviates from
model assumptions. Therefore, our approach depends upon the ability to check,
at runtime, whether the current state of the system can be explained by a hybrid
program.

The KeYmaera X theorem prover implements the ModelPlex algorithm [25].
For a given dL specification ModelPlex constructs a correctness proof for mon-
itoring conditions expressed as a formula of quantifier-free real arithmetic. The
monitoring condition is then used to extract provably correct monitors that
check whether observed transitions comport with modeling assumptions. Model-
Plex can produce monitors that enforce models of control programs as well as
monitors that check whether the model’s ODEs comport with observed state
transitions.

ModelPlex controller monitors are boolean functions that return false if the
controller portion of a hybrid systems model has been violated. A controller
monitor for a model {ctrl;plant}∗ is a function cm : S ×A → B from states
S and actions A to booleans B such that if cm(s, a) then (s, a(s)) ∈ JctrlK. We
sometimes also abuse notation by using controller monitors as an implicit filter
on A; i.e., cm : S → A such that a ∈ cm(s) iff cm(s, a) is true.

ModelPlex also produces model monitors, which check whether the model is
accurate. A model monitor for a safety specification φ → [α∗]ψ is a function
mm : S × S → B such that (s0, s) ∈ JαK if mm(s0, s). For the sake of brevity,
we also define mm : S × A × S → B as the model monitor applied after taking
an action (a ∈ A) in a state and then following the plant in a model of form
α ≡ ctrl;plant. Notice that if the model has this canonical form and if if
mm(s, a, a(s)) for an action a, then cm(s, a(s)).

The KeYmaera X system is a theorem prover [12] that provides a language
called Bellerophon for scripting proofs of dL formulas [11]. Bellerophon pro-
grams, called tactics, construct proofs of dL formulas. This paper proposes an
approach toward updating models in a way that preserves safety proofs. Our
approach simultaneously changes a system of differential equations, control soft-
ware expressed as a discrete loop-free program, and the formal proof that the
controller properly selects actuator values such that desired safety constraints
are preserved throughout the flow of a system of differential equations.

3 Verification-Preserving Model Updates

A verification-preserving model update (VPMU) is a transformation of a hybrid
program accompanied by a proof that the transformation preserves key safety
properties [13]. VPMUs capture situations in which a model and/or a set of data
can be updated in a way that captures possible runtime behaviors which are not
captured by an existing model.

Verifiably Safe Off-Model Reinforcement Learning 7

Definition 1 (VPMU). A verification-preserving model update is a mapping
which takes as input an initial dL formula ϕ with an associated Bellerophon tactic
e of ϕ, and produces as output a new dL formula ψ and a new Bellerophon tactic
f such that f is a proof of ψ.

Before discussing our VPMU library, we consider how a set of feasible models
computed using VPMUs can be used to provide verified safety guarantees for a
family of reinforcement learning algorithms. The primary challenge is to maintain
safety with respect to all feasible models while also avoiding overly conservative
monitoring constraints. We address this challenge by falsifying some of these
models at runtime.

4 Verifiably Safe RL with Multiple Models

VPMUs may be applied whenever system designers can characterize likely ways
in which an existing model will deviate from reality. Although applying model
updates at runtime is possible and sometimes makes sense, model updates are
easiest to apply at design time because of the computational overhead of com-
puting both model updates and corresponding proof updates. This section in-
troduces model update learning, which explains how to take a set of models
generated using VPMUs at design time to provide safety guarantees at runtime.

Model update learning is based on a simple idea: begin with a set of feasible
models and act safely with respect to all feasible models. Whenever a model
does not comport with observed dynamics, the model becomes infeasible and
is therefore removed from the set of feasible models. We introduce two varia-
tions of µlearning: a basic algorithm that chooses actions without considering
the underlying action space, and an algorithm that prioritizes actions that rule
out feasible models (adding an eliminate choice to the classical explore/exploit
tradeoff [32]).

All µlearning algorithms use monitored models; i.e., models equipped with
ModelPlex controller monitors and model monitors.

Definition 2 (Monitored Model). A monitored model is a tuple
(m, cm,mm) such that m is a dL formula of the form

init→ [{ctrl;plant}∗]safe

where ctrl is a loop-free program, the entire formula m contains exactly one
modality, and the formulas cm and mm are the control monitor and model mon-
itor corresponding to m, as defined in Section 2.

Monitored models may have a continuous action space because of both tests
and the nondeterministic assignment operator. We sometimes introduce addi-
tional assumptions on the structure of the monitored models. A monitored model
over a finite action space is a monitored model where {t : (s, t) ∈ JctrlK} is
finite for all s ∈ S. A time-aware monitored model is a monitored model whose
differential equations contain a local clock which is reset at each control step.

8 Nathan Fulton and André Platzer

Model update learning, or µlearning, leverages verification-preserving model
updates to maintain safety while selecting an appropriate environmental model.
We now state and prove key safety properties about the µlearning algorithm.

Definition 3 (µlearning Process). A learning process PM for a finite set of
monitored models M is defined as a tuple of countable sequences (U,S,Mon)
where U are actions in a finite set of actions A (i.e., mappings from variables to
values), elements of the sequence S are states, and Mon are monitored models
with Mon0 = M . Let specOKm(U,S, i) ≡ mm(Si−1,Ui−1,Si) → cm(Si,Ui)
where cm and mm are the monitors corresponding to the model m. Let specOK
always return true for i = 0.

A µlearning process is a learning process satisfying the following additional
conditions: (a) action availability: in each state Si there is at least one action u
such that for all m ∈Moni, u ∈ specOKm(U,S, i), (b) actions are safe for all
feasible models: Ui+1 ∈ {u ∈ A | ∀(m,cm,mm) ∈ Moni,cm(Si, u)}, (c) feasible
models remain in the feasible set: if (ϕ,cm,mm) ∈ Moni and mm(Si,Ui,Si+1)
then (ϕ,cm,mm) ∈Moni+1.

Note that µlearning processes are defined over an environment E : A×S → S
that determines the sequences U and S1, so that Si+1 = E(Ui,Si). In our
algorithms, the set Moni never retains elements that are inconsistent with the
observed dynamics at the previous state. We refer to the set of models in Moni

as the set of feasible models for the ith state in a µlearning process.
Notice that the safe actions constraint is not effectively checkable without

extra assumptions on the range of parameters. Two canonical choices are dis-
cretizing options for parameters or including an effective identification process
for parameterized models.

Our safety theorem focuses on time-aware µlearning processes, i.e., those
whose models are all time-aware; similarly, a finite action space µlearning process
is a µlearning process in which all models m ∈ M have a finite action space.
The basic correctness property for a µlearning process is the safe reinforcement
learning condition: the system never takes unsafe actions.

Definition 4 (µlearning process with an accurate model). Let PM =
(S,U,Mon) be a µlearning process. Assume there is some element m∗ ∈Mon0

with the following properties. First,

m∗ ≡ (initm → [{ctrlm;plantm}∗]safe).

Second, ` m∗. Third, (s, u(s)) ∈ JctrlmK implies (u(s), E(u, s)) ∈ JplantK for a
mapping E : S×A → S from states and actions to new states called environment.
When only one element of Mon0 satisfies these properties we call that element
m∗ the distinguished and/or accurate model and say that the process PM is
accurately modeled with respect to E.

1 Throughout the paper, we denote by S a specific sequence of states and by S the
set of all states.

Verifiably Safe Off-Model Reinforcement Learning 9

We will often elide the environment E for which the process PM is accurate
when it is obvious from context.

Theorem 1 (Safety). If PM is a µlearning process with an accurate model,
then Si |= safe for all 0 < i < |S|.

Listing 1.1 presents the µlearning algorithm. The inputs are: (a) A set M of
models each with an associated function m.models : S×A×S → B that imple-
ments the evaluation of its model monitor in the given previous and next state
and actions and a method m.safe : S × A → B which implements evaluation
of its controller monitor, (b) an action space A and an initial state init ∈ S,
(c) an environment function env : S ×A → S ×R that computes state updates
and rewards in response to actions, and (d) a function choose : ℘(A) → A
that selects an action from a set of available actions and update updates a ta-
ble or approximation. Our approach is generic and works for any reinforcement
learning algorithm; therefore, we leave these functions abstract. It augments an
existing reinforcement learning algorithm, defined by update and choose, by
restricting the action space at each step so that actions are only taken if they
are safe with respect to all feasible models. The feasible model set is updated at
each control set by removing models that are in conflict with observed data.

The µlearning algorithm rules out incorrect models from the set of possible
models by taking actions and observing the results of those actions. Through
these experiments, the set of relevant models is winnowed down to either the
distinguished correct model m∗, or a set of models M∗ containing m∗ and other
models that cannot be distinguished from m∗.

Listing 1.1. The basic µlearning algorithm

def µlearn(M,A,init,env,choose,update):
s_pre = s_curr = init
act = None
while(not done(s_curr)):
if act is not None:

M = {m ∈ M : m.models(s_pre,act,s_curr)}
avail = {a ∈ A : ∀ m ∈ M, m.safe(s_curr, a)}
act = choose(avail)
s_pre = s_curr
(s_curr, reward) = env(s_curr, act)
update(s_pre, act, s_curr, reward)

4.1 Active Verified Model Update Learning

Removing models from the set of possible models relaxes the monitoring condi-
tion, allowing less conservative and more accurate control decisions. Therefore,
this section introduces an active learning refinement of the µlearning algorithm
that prioritizes taking actions that help rule out models m ∈ M that are not
m∗. Instead of choosing a random safe action, µlearning prioritizes actions that

10 Nathan Fulton and André Platzer

differentiate between available models. We begin by explaining what it means
for an algorithm to perform good experiments.

Definition 5 (Active Experimentation). A µlearning process with an accu-
rate model m∗ has locally active experimentation provided that: if Moni > 1
and there exists an action a that is safe for all feasible models (see Definition 3)
in state si such that taking action a results in the removal of m from the model
set2, then |Moni+1| < |Moni|. Experimentation is er-active if the following
conditions hold: there exists an action a that is safe for all feasible models (see
Definition 3) in state si, and taking action a resulted in the removal of m from
the model set, then |Moni+1| < |Moni| with probability 0 < er < 1.

Definition 6 (Distinguishing Actions). Consider a µlearning process
(U,S,Mon) with an accurate model m∗ (see Definition 4). An action a distin-
guishes m from m∗ if a = Ui, m ∈Moni and m 6∈Moni+1 for some i > 0.

The active µlearning algorithm uses model monitors to select distinguish-
ing actions, thereby performing active experiments which winnow down the set
of feasible models. The inputs to active-µlearn are the same as those to
Listing 1.1 with two additions: (1) models are augmented with an additional
prediction method p that returns the model’s prediction of the next state given
the current state, a candidate action, and a time duration. (2) An elimination
rate er is introduced, which plays a similar role as the classical explore-exploit
rate except that we are now deciding whether to insist on choosing a good ex-
periment. The active-µlearn algorithm is guaranteed to make some progress
toward winnowing down the feasible model set whenever 0 < er < 1.

Theorem 2. Let PM = (S,U,Mon) be a finite action space µlearning process
with an accurate model m∗. Then m∗ ∈Moni for all 0 ≤ i ≤ |Mon|.

Theorem 3. Let PM be a finite action space er-active µlearning process under
environment E and with an accurate model m∗. Consider any model m ∈Mon0

such that m 6= m∗. If every state s has an action as that is safe for all models
and distinguishes m from m∗, then limi→∞ Pr(m 6∈Moni) = 1.

Corollary 1 Let PM = (S,U,Mon) be a finite action space er-active µlearning
process under environment E and with an accurate model m∗. If each model
m ∈ Mon0 \ {m∗} has in each state s an action as that is safe for all models
and distinguishes m from m∗, then Mon converges to {m∗} a.s.

Although locally active experimentation is not strong enough to ensure that
PM eventually converges to a minimal set of models3, our experimental validation
demonstrates that this heuristic is none-the-less effective on some representative
examples of model update learning problems.

2 We say that taking action ai in state si results in the removal of a model m from
the model set if m ∈Moni but m 6∈Moni+1.

3 x ≥ 0 ∧ t = 0 → [{{?t = 0;x := 1 ∪ x := 0}; {x′ = F, t′ = 1}}∗]x ≥ 0 with the
parameters F = 0, F = 5, and F = x are a counter example [10, Section 8.4.4].

Verifiably Safe Off-Model Reinforcement Learning 11

5 A Model Update Library

So far, we have established how to obtain safety guarantees for reinforcement
learning algorithms given a set of formally verified dL models. We now turn
our attention to the problem of generating such a set of models by systemati-
cally modifying dL formulas and their corresponding Bellerophon tactical proof
scripts. This section introduces five generic model updates that provide a repre-
sentative sample of the kinds of computations that can be performed on models
and proofs to predict and account for runtime model deviations4.

The simplest example of a VPMU instantiates a parameter whose value is not
known at design time but can be determined at runtime via system identification.
Consider a program p modeling a car whose acceleration depends upon both a
known control input accel and parametric values for maximum braking force
−B and maximum acceleration A. Its proof is

implyR(1);loop(pos− obsPos >
vel2

2B
, 1);onAll(master)

This model and proof can be updated with concrete experimentally determined
values for each parameter by uniformly substituting the variables B and A with
concrete values in both the model and the tactic.

The Automatic Parameter Instantiation update improves the basic pa-
rameter instantiation update by automatically detecting which variables are pa-
rameters and then constraining instantiation of parameters by identifying rele-
vant initial conditions.

The Replace Worst-Case Bounds with Approximations update im-
proves models designed for the purpose of safety verification. Often a variable
occurring in the system is bounded above (or below) by its worst-case value.
Worst-case analyses are sufficient for establishing safety but are often overly
conservative. The approximation model update replaces worst-case bounds with
approximate bounds obtained via series expansions. The proof update then in-
troduces a tactic on each branch of the proof that establishes our approximations
are upper/lower bounds by performing.

Models often assume perfect sensing and actuation. A common way of ro-
bustifying a model is to add a piecewise constant noise term to the system’s
dynamics. Doing so while maintaining safety invaraints requires also updating
the controller so that safety envelope computations incorporate this noise term.
The Add Disturbance Term update introduces noise terms to differential
equations, systematically updates controller guards, and modifies the proof ac-
cordingly.

Uncertainty in object classification is naturally modeled in terms of sets of
feasible models. In the simplest case, a robot might need to avoid an obstacle that
is either static, moves in a straight line, or moves sinusoidally. Our generic model
update library contains an update that changes the model by making a static
point (x, y) dynamic. For example, one such update introduces the equations

4 Extended discussion of these model updates is available in [10, Chapters 8 and 9].

12 Nathan Fulton and André Platzer

{x′ = −y, y′ = −x} to a system of differential equations in which the variables
x, y do not have differential equations. The controller is updated so that any
statements about separation between (a, b) and (x, y) require global separation
of (a, b) from the circle on which (x, y) moves. The proof is also updated by
prepending to the first occurrence of a differential tactic on each branch with a
sequence of differential cuts that characterize circular motion.

Model updates also provide a framework for characterizing algorithms that
combine model identification and controller synthesis. One example is our syn-
thesis algorithm for systems whose ODEs have solutions in a decidable fragment
of real arithmetic (a subset of linear ODEs). Unlike other model updates, we do
not assume that any initial model is provided; instead, we learn a model (and
associated control policy) entirely from data. The Learn Linear Dynamics
update takes as input: (1) data from previous executions of the system, and (2)
a desired safety constraint. From these two inputs, the update computes a set
of differential equations odes that comport with prior observations, a corre-
sponding controller ctrl that enforces the desired safety constraint with cor-
responding initial conditions init, and a Bellerophon tactic prf which proves
init → [{ctrl;odes}∗]safe. Computing the model requires an exhaustive
search of the space of possible ODEs followed by a computation of a safe con-
trol policy using solutions to the resulting ODEs. Once a correct controller is
computed, the proof proceeds by symbolically decomposing the control program
and solving the ODEs on each resulting control branch. The full mechanism is
beyond the scope of this paper but explained in detail elsewhere [10, Chapter 9].

Significance of Selected Updates The updates described in this section demon-
strate several possible modes of use for VPMUs and µlearning. VPMUS can
update existing models to account for systematic modeling errors (e.g., missing
actuator noise or changes in the dynamical behavior of obstacles). VPMUs can
automatically optimize control logic in a proof-preserving fashion. VPMUS can
also be used to generate accurate models and corresponding controllers from
experimental data made available at design time, without access to any prior
model of the environment.

6 Experimental Validation

The µlearning algorithms introduced in this paper are designed to answer the
following question: given a set of possible models that contains the one true
model, how can we safely perform a set of experiments that allow us to efficiently
discover a minimal safety constraint? In this section we present two experiments
which demonstrate the use of µlearning in safety-critical settings. Overall, these
experiments empirically validate our theorems by demonstrating that µlearning
processes with accurate models do not violate safety constraints.

Our simulations use a conservative discretization of the hybrid systems mod-
els, and we translated monitoring conditions by hand into Python from Model-
Plex’s C output. Although we evaluate our approach in a research prototype im-
plemented in Python for the sake of convenience, there is a verified compilation

Verifiably Safe Off-Model Reinforcement Learning 13

pipeline for models implemented in dL that eliminates uncertainty introduced
by discretization and hand-translations [7].

Adaptive Cruise Control. Adaptive Cruise Control (ACC) is a common fea-
ture in new cars. ACC systems change the speed of the car in response to the
changes in the speed of traffic in front of the car; e.g., if the car in front of an
ACC-enabled car begins slowing down, then the ACC system will decelerate to
match the velocity of the leading car. Our first set of experiments consider a sim-
ple linear model of ACC in which the acceleration set-point is perturbed by an
unknown parameter p; i.e., the relative position of the two vehicles is determined
by the equations pos′rel = velrel, vel′rel = accrel.

In [14], the authors consider the collision avoidance problem when a noise
term is added so that vel′rel = paccrel. We are able to outperform the approach
in [14] by combining the Add Noise Term and Parameter Instantiation
updates; we outperform in terms of both avoiding unsafe states and in terms of
cumulative reward. These two updates allow us to insert a multiplicative noise
term p into these equations, synthesize a provably correct controller, and then
choose the correct value for this noise term at runtime. Unlike [14], µlearning
avoids all safety violations. The graph in Figure 1 compares the Justified Spec-
ulative Control approach of [14] to our approach in terms of cumulative reward;
in addition to substantially outperforming the JSC algorithm of [14], µlearning
also avoids 204 more crashes throughout a 1,000 episode training process.

Fig. 1. Left: The cumulative reward obtained by Justified Speculative Control [14]
(green) and µlearning (blue) during training over 1,000 episodes with each episode
truncated at 100 steps. Each episode used a randomly selected error term that re-
mains constant throughout each episode but may change between episodes. Right: a
visualization of the hierarchical safety environment.

A Hierarchical Problem. Model update learning can be extended to provide
formal guarantees for hierarchical reinforcement learning algorithms [6]. If each
feasible model m corresponds to a subtask, and if all states satisfying termi-
nation conditions for subtask mi are also safe initial states for any subtask mj

reachable from mi, then µlearning directly supports safe hierarchical reinforce-
ment learning by re-initializing M to the initial (maximal) model set whenever
reaching a termination condition for the current subtask.

14 Nathan Fulton and André Platzer

We implemented a variant of µlearning that performs this re-initialization
and validated this algorithm in an environment where a car must first navigate
an intersection containing another car and then must avoid a pedestrian in a
crosswalk (as illustrated in Figure 1). In the crosswalk case, the pedestrian at
(pedx, pedy) may either continue to walk along a sidewalk indefinitely or may
enters the crosswalk at some point between cmin ≤ pedy ≤ cmax (the boundaries
of the crosswalk). This case study demonstrates that safe hierarchical reinforce-
ment learning is simply safe µlearning with safe model re-initialization.

7 Related Work

Related work falls into three broad categories: safe reinforcement learning, run-
time falsification, and program synthesis.

Our approach toward safe reinforcement learning differs from existing ap-
proaches that do not include a formal verification component (e.g., as surveyed
by Garćıa and Fernández [15] and the SMT-based constrained learning approach
of Junges et al. [21]) because we focused on verifiably safe learning; i.e., instead
of relying on oracles or conjectures, constraints are derived in a provably cor-
rect way from formally verified safety proofs. The difference between verifiably
safe learning and safe learning is significant, and is equivalent to the difference
between verified and unverified software. Unlike most existing approaches our
safety guarantees apply to both the learning process and the final learned policy.

Section 2 discusses how our work relates to the few existing approaches to-
ward verifiably safe reinforcement learning. Unlike those [3,17,20,14], as well as
work on model checking and verification for MDPs [18], we introduce an approach
toward verifiably safe off-model learning. Our approach is the first to combine
model synthesis at design time with model falsification at runtime so that safety
guarantees capture a wide range of possible futures instead of relying on a single
accurate environmental model. Safe off-model learning is an important problem
because autonomous systems must be able to cope with unanticipated scenarios.
Ours is the first approach toward verifiably safe off-model learning.

Several recent papers focus on providing safety guarantees for model-free re-
inforcement learning. Trust Region Policy Optimization [31] defines safety as
monotonic policy improvement, a much weaker notion of safety than the con-
straints guaranteed by our approach. Constrained Policy Optimization [1] ex-
tends TRPO with guarantees that an agent nearly satisfies safety constraints
during learning. Brázdil et al. [8] give probabilistic guarantees by performing a
heuristic-driven exploration of the model. Our approach is model-based instead
of model-free, and instead of focusing on learning safely without a model we fo-
cus on identifying accurate models from data obtained both at design time and
at runtime. Learning concise dynamical systems representations has one sub-
stantial advantage over model-free methods: safety guarantees are stated with
respect to an explainable model that captures the safety-critical assumptions
about the system’s dynamics. Synthesizing explainable models is important be-
cause safety guarantees are always stated with respect to a model; therefore,

Verifiably Safe Off-Model Reinforcement Learning 15

engineers must be able to understand inductively synthesized models in order to
understand what safety properties their systems do (and do not) ensure.

Akazaki et al. propose an approach, based on deep reinforcement learning,
for efficiently discovering defects in models of cyber-physical systems with spec-
ifications stated in signal temporal logic [2]. Model falsification is an important
component of our approach; however, unlike Akazaki et al., we also propose an
approach toward obtaining more robust models and explain how runtime falsifi-
cation can be used to obtain safety guarantees for off-model learning.

Our approach includes a model synthesis phase that is closely related to
program synthesis and program repair algorithms [23,24,29]. Relative to work on
program synthesis and repair, VPMUs are unique in several ways. We are the first
to explore hybrid program repair. Our approach combines program verification
with mutation. We treat programs as models in which one part of the model is
varied according to interactions with the environment and another part of the
model is systematically derived (together with a correctness proof) from these
changes. This separation of the dynamics into inductively synthesized models and
deductively synthesized controllers enables our approach toward using programs
as representations of dynamic safety constraints during reinforcement learning.

Although we are the first to explore hybrid program repair, several researchers
have explored the problem of synthesizing hybrid systems from data [5,30]. This
work is closely related to our Learn Linear Dynamics update. Sadraddini
and Belta provide formal guarantees for data-driven model identification and
controller synthesis [30]. Relative to this work, our Learn Linear Dynamics
update is continuous-time, synthesizes a computer-checked correctness proof but
does not consider the full class of linear ODEs. Unlike Asarin et al. [5], our full
set of model updates is sometimes capable of synthesizing nonlinear dynamical
systems from data (e.g., the static → circular update) and produces computer-
checked correctness proofs for permissive controllers.

8 Conclusions

This paper introduces an approach toward verifiably safe off-model learning that
uses a combination of design-time verification-preserving model updates and run-
time model update learning to provide safety guarantees even when there is no
single accurate model available at design time. We introduced a set of model
updates that capture common ways in which models can deviate from reality,
and introduced an update that is capable of synthesizing ODEs and provably
correct controllers without access to an initial model. Finally, we proved safety
and efficiency theorems for active µlearning and evaluated our approach on some
representative examples of hybrid systems control tasks. Together, these contri-
butions constitute a first approach toward verifiably safe off-model learning.

16 Nathan Fulton and André Platzer

References

1. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In:
Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference
on Machine Learning (ICML 2017). Proceedings of Machine Learning Research,
vol. 70, pp. 22–31. PMLR (2017)

2. Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., Hao, J.: Falsification of cyber-
physical systems using deep reinforcement learning. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) Formal Methods. pp. 456–465. Springer International
Publishing, Cham (2018)

3. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe re-
inforcement learning via shielding. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI
2018). AAAI Press (2018)

4. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: An algorith-
mic approach to the specification and verification of hybrid systems. In: Grossman,
R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems. LNCS, vol. 736,
pp. 209–229. Springer (1992)

5. Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective synthesis of
switching controllers for linear systems. Proceedings of the IEEE 88(7), 1011–1025
(July 2000)

6. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems 13(1-2), 41–77 (2003)

7. Bohrer, B., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: Verified
controller executables from verified cyber-physical system models. In: Grossman,
D. (ed.) Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018). pp. 617–630. ACM (2018)

8. Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kret́ınský, J., Kwiatkowska,
M.Z., Parker, D., Ujma, M.: Verification of markov decision processes using learn-
ing algorithms. In: Automated Technology for Verification and Analysis - 12th
International Symposium (ATVA 2014). pp. 98–114 (2014)

9. Fridovich-Keil, D., Herbert, S.L., Fisac, J.F., Deglurkar, S., Tomlin, C.J.: Planning,
fast and slow: A framework for adaptive real-time safe trajectory planning. In:
IEEE International Conference on Robotics and Automation (ICRA). pp. 387–394
(2018)

10. Fulton, N.: Verifiably Safe Autonomy for Cyber-Physical Systems. Ph.D. thesis,
Computer Science Department, School of Computer Science, Carnegie Mellon Uni-
versity (2018)

11. Fulton, N., Mitsch, S., Bohrer, B., Platzer, A.: Bellerophon: Tactical theorem prov-
ing for hybrid systems. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) Interactive The-
orem Proving - 8th International Conference (ITP 2017). LNCS, vol. 10499, pp.
207–224. Springer (2017)

12. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An ax-
iomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A.
(eds.) CADE. LNCS, vol. 9195, pp. 527–538. Springer (2015)

13. Fulton, N., Platzer, A.: Safe AI for CPS (invited paper). In: IEEE International
Test Conference (ITC 2018) (2018)

14. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: To-
ward safe control through proof and learning. In: McIlraith, S., Weinberger, K.
(eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI 2018). pp. 6485–6492. AAAI Press (2018)

Verifiably Safe Off-Model Reinforcement Learning 17

15. Garćıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research 16, 1437–1480 (2015)

16. Ghosh, S., Berkenkamp, F., Ranade, G., Qadeer, S., Kapoor, A.: Verifying
Controllers Against Adversarial Examples with Bayesian Optimization. CoRR
abs/1802.08678 (2018)

17. Hasanbeig, M., Abate, A., Kroening, D.: Logically-correct reinforcement learning.
CoRR abs/1801.08099 (2018)

18. Henriques, D., Martins, J.G., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical
model checking for Markov decision processes. In: QEST. pp. 84–93. IEEE Com-
puter Society (2012). https://doi.org/10.1109/QEST.2012.19

19. Herbert, S.L., Chen, M., Han, S., Bansal, S., Fisac, J.F., Tomlin, C.J.: FaSTrack: A
modular framework for fast and guaranteed safe motion planning. In: IEEE Annual
Conference on Decision and Control (CDC)

20. Jansen, N., Könighofer, B., Junges, S., Bloem, R.: Shielded decision-making in
MDPs. CoRR abs/1807.06096 (2018)

21. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.: Safety-constrained
reinforcement learning for mdps. In: Chechik, M., Raskin, J. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems - 22nd International Con-
ference (TACAS/ETAPS 2016). LNCS, vol. 9636, pp. 130–146. Springer (2016)

22. Kalra, N., Paddock, S.M.: Driving to Safety: How Many Miles of Driving Would It
Take to Demonstrate Autonomous Vehicle Reliability? RAND Corporation (2016)

23. Kitzelmann, E.: Inductive programming: A survey of program synthesis techniques.
In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) Third International Workshop
on Approaches and Applications of Inductive Programming (AAIP 2009). Lecture
Notes in Computer Science, vol. 5812, pp. 50–73. Springer (2009)

24. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: A generic method
for automatic software repair. IEEE Trans. Software Eng. 38(1), 54–72 (2012)

25. Mitsch, S., Platzer, A.: ModelPlex: Verified runtime validation of verified cyber-
physical system models. Form. Methods Syst. Des. 49(1), 33–74 (2016), special
issue of selected papers from RV’14

26. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008)

27. Platzer, A.: Logics of dynamical systems. In: LICS. pp. 13–24. IEEE (2012)
28. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas. 59(2), 219–266 (2017)
29. Rothenberg, B., Grumberg, O.: Sound and complete mutation-based program re-

pair. In: Fitzgerald, J.S., Heitmeyer, C.L., Gnesi, S., Philippou, A. (eds.) Formal
Methods - 21st International Symposium (FM 2016). LNCS, vol. 9995, pp. 593–611
(2016)

30. Sadraddini, S., Belta, C.: Formal guarantees in data-driven model identification
and control synthesis. In: Proceedings of the 21st International Conference on
Hybrid Systems: Computation and Control (HSCC 2018). pp. 147–156 (2018)

31. Schulman, J., Levine, S., Abbeel, P., Jordan, M.I., Moritz, P.: Trust region pol-
icy optimization. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd In-
ternational Conference on Machine Learning (ICML 2015). JMLR Workshop and
Conference Proceedings, vol. 37, pp. 1889–1897 (2015)

32. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

https://doi.org/10.1109/QEST.2012.19

	Verifiably Safe Off-Model Reinforcement Learning

