
A Logic of Proofs for Differential Dynamic Logic
Toward Independently Checkable Proof Certificates for Dynamic Logics

Nathan Fulton
Institute for Software Research

Carnegie Mellon University, Pittsburgh PA, USA
nathanfu@cs.cmu.edu

André Platzer
Computer Science Department

Carnegie Mellon University, Pittsburgh PA, USA
aplatzer@cs.cmu.edu

Abstract
Differential dynamic logic is a logic for specifying and verify-
ing safety, liveness, and other properties about models of cyber-
physical systems. Theorem provers based on differential dynamic
logic have been used to verify safety properties for models of self-
driving cars and collision avoidance protocols for aircraft. Unfor-
tunately, these theorem provers do not have explicit proof terms,
which makes the implementation of a number of important features
unnecessarily complicated without soundness-critical and extra-
logical extensions to the theorem prover. Examples include: an un-
ambiguous separation between proof checking and proof search,
the ability to extract program traces corresponding to counter-
examples, and synthesis of surely-live deterministic programs from
liveness proofs for nondeterministic programs.

This paper presents a differential dynamic logic with such an
explicit representation of proofs. The resulting logic extends both
the syntax and semantics of differential dynamic logic with proof
terms – syntactic representations of logical deductions. To support
axiomatic theorem proving, the logic allows equivalence rewriting
deep within formulas and supports both uniform renaming and
uniform substitutions.

Categories and Subject Descriptors F.4.1 [Mechanical theorem
proving]; F.3.2 [Denotational semantics]

General Terms Verification

Keywords cyber-physical systems, differential dynamic logic, hy-
brid systems, proof terms

1. Introduction
Cyber-physical systems (CPS) are systems that combine computa-
tion with control of physical processes. Examples of CPS include
self-driving cars, train control systems, and collision avoidance
protocols for aircraft. Cyber-physical systems are an important do-
main in software verification because CPS are often safety-critical
– a bug in the control software of a self-driving car or a train con-
trol system could lead to loss of human life. Unfortunately, many
software verification techniques developed in the context of dis-

crete dynamical systems are incapable of handling the infinite state
space introduced by the presence of differential equations.

Hybrid systems are a mathematical model of cyber-physical
systems that combine a model of discrete computation (impera-
tive computation) with continuous dynamics (ordinary differential
equations). Differential dynamic logic [20, 23] is a logic for spec-
ifying and verifying properties of hybrid systems. Recent work
on theorem proving for cyber-physical systems demonstrates that
dynamic logics are a powerful formalism for mechanizing proofs
about many other types of dynamical systems. KeYmaera [27] is
a theorem prover for differential dynamic logic that has been used
to verify various properties of distributed adaptive cruise control
for self-driving cars [13], the European Train Control System [28],
and multiple collision avoidance protocols for aircraft [11, 14, 26].
KeYmaera X is a successor to KeYmaera that supports the same
verification tasks, but features tactical theorem proving on top of a
small soundness-critical core [7].

Unlike theorem provers based upon type-theoretic foundations,
theorem provers in the dynamic logic tradition are not based upon
logics with a formalized notion of explicit proof evidence. Like
several other theorem provers, KeYmaera X ensures soundness
by only allowing truth-preserving transformations on formulas,
rather than by production of formally defined and independently
checkable proof terms. The long list of successful theorem provers
that are based on logics without proof terms demonstrates truth-
preserving operations on formulas are enough to ensure the sound-
ness of a theorem prover.

Although truth-preserving operations are sufficient for ensuring
soundness, proof terms address a number of limitations that have
arisen during the development and use of the KeYmaera and KeY-
maera X theorem provers. KeYmaera and KeYmaera X do not:

• provide a clean separation between proof checking and proof
search
• implement a mechanism for composing, reusing, or parameter-

izing proofs (merely mechanisms for composing provability);
or
• take advantage of procedures that require interrogating or mod-

ifying the structure of a proof.

One advantage of the approach KeYmaera X takes is that there
is never a need to re-check proofs obtained via proof search because
search always proceeds via operations defined in the soundness-
critical core of KeYmaera X. However, ensuring soundness is not
the only motivation for separating searching from checking. KeY-
maera X allows for parallel speculative proof search, so persisting
the particular execution trace of a proof search procedure requires
storing and merging proof state using extra-logical operations. In-
troducing an explicit notion of evidence into differential dynamic

logic is a more principled solution than post-hoc analysis of the
execution of a search procedure.

The second challenge is surmountable within a single theorem
proving session, but is problematic in cases where users collaborate
on proofs. Proof terms provide a natural modularity mechanism and
allow users to import proven lemmas from other users without re-
executing an expensive proof search procedure or blindly trusting
the source of the proof.

The significance of the final challenge extends beyond the
specifics of implementations. Extant dynamic logics do not provide
a compelling foundation for defining proof-preserving transforma-
tions; i.e., transformations to system models that are accompanied
by a corresponding transformation on a proof. They are limited to
truth-preserving transformations without preserving corresponding
proofs syntactically.

This paper presents a Logic of Proofs for Differential Dynamic
Logic (LPdL). LPdL provides an explicit notion of evidence in
the form of proof terms – syntactic objects that correspond to
deductions in (the uniform substitution calculus of) differential
dynamic logic (dL). Concretely, we assign a syntactic term e to
each derivation of φ in dL such that e : φ – read as “e is a proof
of φ” – is a theorem of LPdL. We provide a semantics and an
axiomatization for this language of proof terms and establish some
basic results about the logic and its relation to dL. Although the
primary topic of this paper is LPdL itself, potential applications
are worth noting because they motivate the design of the logic.

One application – discussed in Section 5 – is an ongoing imple-
mentation of a proof term checker – a program that takes a formula
of the form e : φ and checks that e is a proof of φ. Proof checkers
are useful because they separate proof search from proof checking
and provide obvious paths toward composition of proofs.

LPdL is designed to support other applications as well. A ma-
jor goal for KeYmaera X is automatic transformation of a live-
ness proof for a non-deterministic model into a safety proof for
a fully deterministic model. Understanding the motivation for this
operation requires understanding the typical structure of a model
specified in dL. Models of cyber-physical systems are often stated
as non-deterministic programs because a non-deterministic model
can capture a variety of environmental conditions and a variety
of control decisions. For example, a car’s sensors might sample
at non-deterministic points in time, and its control program might
choose between acceleration and deceleration in ways that are not
known a priori (or that are overly laborious to specify during veri-
fication). Synthesizing a most-conservative deterministic controller
from these non-deterministic models plugs a major remaining gap
between CPS models and control software implementations. Essen-
tially, the key insight is that liveness proofs in dL contain enough
information to construct the particular execution that witnesses
liveness. The logic described in this paper directly supports this
goal in a way that truth-preserving operations do not.

Summarily, our primary contributions are:
• We present a semantic model that extends the standard reach-

ability relation semantics of differential dynamic logic with a
notion of evidence (following Fitting [6]).
• We extend a differential dynamic logic with an explicit notion

of evidence – a Logic of Proofs for Differential Dynamic Logic
(LPdL).
• We establish the correctness of this logic by proving that all

pieces of evidence in LPdL correspond to a deduction in dL.
• We explain how the results established in this paper can be used

to construct a proof term checker for LPdL without extending
the soundness-critical core of a theorem prover based on truth-
preserving transformations to theorems, and discuss the details
of an ongoing implementation of an LPdL proof checker as an
extension to KeYmaera X.

These contributions constitute a logical foundation for hybrid
systems with an explicit notion of evidence.

2. Background
This section presents necessary background for the remainder of
the paper, including an introduction to cyber-physical systems and
a discussion of the uniform substitution calculus of dL.

2.1 Modeling Cyber-Physical Systems Using Hybrid
Programs

Hybrid dynamical systems [2, 23] are mathematical models for an-
alyzing the interaction between discrete and continuous dynamics.
This section presents a semantic model of hybrid dynamical sys-
tems called hybrid programs, introduces the language of differen-
tial dynamic logic (dL), and demonstrates how dL can be used to
specify safety and liveness properties of hybrid programs.

Hybrid programs [21–23] are a programming language model
of hybrid dynamics. Hybrid programs extend non-deterministic im-
perative programs (i.e., regular programs) with differential equa-
tions. A syntax and informal semantics of hybrid programs is given
in Table 1.

Program Statement Meaning
α;β Sequentially composes α and β.
α ∪ β Executes either α or β.
α∗ Repeats α zero or more times.
x := θ Evaluates θ and assign result to x.
x := ∗ Assigns an arbitrary real value to x.
{x′1 = θ1, ..., x

′
n = θn&F} Continuous evolution1.

?F Aborts if F is not true.

Table 1. Hybrid Programs

Differential dynamic logic (dL) is a modal logic for specify-
ing and verifying reachability properties about hybrid programs.
The formulas of dL contain the formulas of the First-order Logic
of Real-Closed Fields (formulas of FOLR), the familiar logical
connectives of propositional logic, and two modalities – [α]φ and
〈α〉φ. These two modalities express reachability properties about
the program α. The box modality ([α]φ) states that φ is true of all
states that are reachable after executing the hybrid program α. The
diamond modality (〈α〉φ) is dual to the box, and states that φ is true
of some state that is reachable after executing the hybrid program
α.

A formal syntax and semantics for dL is given later in Def. 1
and Def. 3. For now, we provide examples of how dL can be used
to model cyber-physical systems and specify properties of these
models.

Example 1. The following dL formula describes a safety property
for a car model.

v ≥ 0 ∧A > 0︸ ︷︷ ︸
initial condition

→

[
(

(a :=A ∪ a := 0)︸ ︷︷ ︸
ctrl

; {p′ = v, v′ = a}︸ ︷︷ ︸
plant

)∗
] v ≥ 0︸ ︷︷ ︸

postcondition

The hybrid program in this formula describes a car that chooses
nondeterministically to accelerate with a maximum acceleration
A or not accelerate, and then follows a differential equation. This
process may repeat arbitrarily many times, and because there is no
evolution domain constraint on plant, each continuous evolution

1 A continuous evolution along the differential equation system x′i = θi for
an arbitrary duration within the region described by formula F .

has an non-negative duration r ∈ R≥0 The formula states that
if the car begins with a non-negative velocity, then it will also
have a non-negative velocity after choosing a new acceleration and
moving for a nondeterministic period of time.

A tutorial with more examples of cyber-physical system models
implemented in dL can be found in [30].

2.2 The Uniform Substitution Calculus of Differential
Dynamic Logic

There are several formulations of differential dynamic logic. The
earliest is a sequent calculus [20]. KeYmaera [27] is an implemen-
tation of the sequent calculus. In this paper, we augment the ax-
iomatic formulation of dL [25] that is implemented in the KeY-
maera X theorem prover.

Typical axiom systems contain a countably infinite number of
axioms generated from a finite set of axiom schemata. For example,
φ ∧ ψ → φ is an axiom schema, and x = 1 ∧ x2 > 0 → x = 1
is a concrete instance of the schema. The axiomatization of dL
that we augment does not have axiom schemata; rather, it has a
finite number of axioms, a finite number of proof rules (represented
as sets of formulas), and a proof rule for performing soundness-
preserving substitutions on these axioms.

The difference between axiom schemata and uniform substi-
tutions is subtle, but is significant in the context of mechanized
proofs. Moving from axiom schemata to concrete axioms isolates
soundness-critical reasoning about binding structure into a very
small soundness-critical core [7]. The uniform substitution calcu-
lus of dL provides locally sound axioms for differential equations
by exploiting differential forms [25].

This section introduces the syntax, semantics, and axiomati-
zation of dL and discusses its uniform substitution calculus. This
logic is augmented in subsequent sections with an explicit notion
of evidence for axiomatic deductions. Readers interested in further
details about the uniform substitution calculus of dL are encour-
aged to read [25].

Definition 1 (Terms). Terms are defined by this grammar (with
θ, η, θi as terms, x as variables, x′ as differential symbols, and f
as function symbols):

θ, η::= x | x′ Variables and Differential Symbols
| f(θ1, . . . , θk) Function Application
| θ + η | θ · η Addition and Multiplication
| (θ)′ Differentials

The variables x and x′ are taken from finite sets of variables V
and V ′ and real numbers are definable as function symbols without
arguments.

Definition 2 (Hybrid Programs). Hybrid programs are defined with
the following grammar (with α, β ranging over hybrid programs,
a over program constants, x over variables, θ over terms possibly
containing x, and ψ over formulas of first-order real arithmetic):

α, β ::= a | x := θ | x′ := θ | ?ψ | x′ = θ&ψ | α ∪ β | α;β | α∗

Hybrid programs of differential-form dL extend the hybrid pro-
grams discussed in Table 1 with differential assignments (x′ := θ)
and program constants a. The former are related to the differen-
tial form axiomatization of differential equations, and the latter are
crucial to proofs involving uniform substitution.

Definition 3 (Formulas). The formulas of dL are defined as follows
(with θ as terms, p as predicates,C as quantifier symbols, and φ, ψ
ranging over dL formulas):

φ, ψ::= θ ≥ η Comparisons
| p(θ1, . . . , θk) Predicates
| C(φ) Quantifier Symbols

〈·〉 〈a〉p(x̄)↔ ¬[a]¬p(x̄)

[:=] [x := f]p(x)↔ p(f)

[?] [?q]p↔ (q → p)

[∪] [a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

[;] [a; b]p(x̄)↔ [a][b]p(x̄)

[∗] [a∗]p(x̄)↔ p(x̄) ∧ [a][a∗]p(x̄)

K [a](p(x̄)→ q(x̄))→ ([a]p(x̄)→ [a]q(x̄))

I [a∗](p(x̄)→ [a]p(x̄))→ (p(x̄)→ [a∗]p(x̄))

V p→ [a]p

G
p(x̄)

[a]p(x̄)

∀
p(x)

∀x p(x)

MP
p→ q p

q

CT
f(x̄) = g(x̄)

c(f(x̄)) = c(g(x̄))

CQ
f(x̄) = g(x̄)

p(f(x̄))↔ p(g(x̄))

CE
p(x̄)↔ q(x̄)

C(p(x̄))↔ C(q(x̄))

US
ϕ

σ(ϕ)

Figure 1. Axioms and proof rules of differential dynamic logic; C
is a quantifier symbol, p, q are predicate symbols, and c, f, g are
function symbols.

| ¬φ | φ ∧ ψ | ∀x φ | ∃x ψ First-order Logic
| [α]φ | 〈α〉φ Modalities

2.2.1 Semantics of dL
States are mappings from variables and differential symbols to R.
The set S is the set of all states.

The semantics of dL terms is a mapping J·KI from terms to R,
where the interpretation I assigns to each n-ary function symbol
f a smooth function I(f) : Rn → R, to each n-ary predicate
symbol p a relation I(p) ⊆ Rn, and to each quantifier symbol C a
functional I(C) mapping a subsetsM ⊆ S to subsets I(C)(M) ⊆
S. Differential symbols and differentials are given local meaning
by differential forms [25].

The semantics of a hybrid program JαKI ⊆ S × S is a reach-
ability relation on states defined for each interpretation I . The se-
mantics of hybrid programs inductively define the transition behav-
ior of each hybrid program. For example,

Jx := θKI = {(v, vrx) : r = JθKIv}
where vrx is the state identical to v except that x maps to r ∈ R.

The semantics of dL formulas is a mapping J·KI from formulas
ϕ to the set of states where ϕ is true. E.g., Jφ∧ψKI = JφKI ∩ JψKI

and JC(φ)KI = I(C)(JφKI) for quantifier symbols C.
The full inductive definition of J·KI for terms, programs, and

formulas is given by Platzer in [25].

2.2.2 Axioms of dL
The axioms and proof rules of dL from [25] are enumerated in
Figures 1 and 2.

In typical verification tasks, the axioms in Fig. 1 are used to
symbolically decompose regular programs and the axioms in Fig. 2
enable various reasoning techniques for handling ordinary differen-

DW [x′ = f(x) & q(x)]q(x)

DC
(
[x′ = f(x) & q(x)]p(x)↔ [x′ = f(x) & q(x) ∧ r(x)]p(x)

)
← [x′ = f(x) & q(x)]r(x)

DE [x′ = f(x) & q(x)]p(x, x′)↔ [x′ = f(x) & q(x)][x′ := f(x)]p(x, x′)

DI [x′ = f(x) & q(x)]p(x)←
(
q(x)→ p(x) ∧ [x′ = f(x) & q(x)](p(x))′

)
DG [x′ = f(x) & q(x)]p(x)↔ ∃y [x′ = f(x), y′ = a(x)y + b(x) & q(x)]p(x)

DS [x′ = f & q(x)]p(x)↔ ∀t≥0
(
(∀0≤s≤t q(x+ fs))→ [x := x+ ft]p(x)

)
[′:=] [x′ := f]p(x′)↔ p(f)

+′ (f(x̄) + g(x̄))′ = (f(x̄))′ + (g(x̄))′

·′ (f(x̄) · g(x̄))′ = (f(x̄))′ · g(x̄) + f(x̄) · (g(x̄))′

◦′ [y := g(x)][y′ := 1]
(
(f(g(x)))′ = (f(y))′ · (g(x))′

)
Figure 2. Differential equation axioms and differential axioms

tial equations. For example, the axioms in Fig. 2 have been used to
implement an Ordinary Differential Equation solver based on log-
ical deductions and have also been used to implement reasoning
techniques based on differential invariants [7]. The CE proof rule
allows for equational rewriting of equivalent subformulas, whereas
CQ and CT allow for equational rewriting of equal terms.

2.3 Uniform Substitutions
Uniform substitutions are mappings from functions f(·) to terms,
predicate symbols p(·) to formulas, quantifier symbolsC() to for-
mulas, and program constants a to programs where · is a reserved
function symbol of arity zero and a reserved quantifier symbol of
arity zero. For example, a 7→ x := 0 substitutes any occurrence of
the program variable a with program x := 0. And p(·) 7→ x ≥ 0
substitutes a predicate p(θ) with a formula θ ≥ 0 for any argument
term θ. Logical deductions in dLmay appeal to the truth-preserving
nature of substitutions via the US proof rule (Fig. 1).

Example 2 (Admissible and Clashing Substitutions). Restricting
the US proof rule to admissible uniform substitutions is necessary
for preserving the soundness of the calculus. Consider the substi-
tution and formula

σ = {a 7→ x := x− 1, p 7→ x ≥ 0}
φ ≡ p→ [a]p.

If σ were admissible for φ (it is not!), then the US proof rule would
allow a proof of x ≥ 0→ [x := x− 1]x ≥ 0:

∗
p→ [a]p

x ≥ 0→ [x := x− 1]x ≥ 0

but this formula is clearly not valid. Conversely, consider the very
similar substitution σ′ and the formula ϕ:

σ′ = {a 7→ x := x− 1, p(·) 7→ x ≥ 0}
ϕ ≡ [a]p(x̄)

for x̄ = (x). Because σ′ is ϕ-admissible, the US proof rule allows
the deduction following

x ≥ 0

[x := x− 1]x ≥ 0

via a uniform substitution on the G proof rule.

Example 2 demonstrates that the US rule is not sound for arbi-
trary substitutions. A sound calculus must restrict uniform substi-
tutions so that substitutions which introduce unsound deductions
are not permitted. For this purpose, dL defines when a given sub-
stitution is admissible for a formula and restricts the US proof rule

so that the rule is only applicable when the substitution σ is φ-
admissible. The two cases in Example 2 demonstrate why admissi-
bility of a substitution depends upon the formula to which a substi-
tution is applied – a substitution may be sound for one formula and
unsound for another.

The slight difference between the substitutions σ and σ′ in
Example 2 demonstrate the significance of the difference between
p, p(x), and p(x̄). These three predicate symbols have different
static semantics. The first symbol (p) has a nullary predicate symbol
The second (p(x)) has a predicate symbol where the variable xmay
occur freely, and the third (p(x̄)) has a predicate symbol where any
x ∈ x̄ may occur freely. These free variables of p continue to be
permitted in its replacement. Additional free variables are allowed
by the US rule when admissible.

The definition of admissibility depends upon the static seman-
tics of dL formulas, so this difference in the static semantics of p,
p(x), and p(x̄) is crucial when determining whether a substitution
is admissible.

The explication of admissibility for uniform substitutions in dL
is critical for soundness but non-trivial (see [25] for details). There-
fore, the results presented in this paper abstract over the particulari-
ties by simply assuming the existence of a mechanism for checking
whether a given substitution is admissible for a given formula and
assuming that there is therefore a sound implementation of the US
proof rule. Readers interested in a constructive definition of ad-
missibility for uniform substitutions in dL may consult Platzer (in
particular, Fig. 1) [25].

Uniform substitutions map function, predicate, and quantifier
symbols to terms and formulas, but do not map variables to vari-
ables. The KeYmaera X theorem prover implements both admissi-
ble uniform substitutions and uniform renaming.

2.4 Comparison with Other Approaches
There are many existing techniques for augmenting an existing
logic with proof terms. This section discusses why we chose to
design and implement a novel logic rather than some of the most
prominent alternatives.

There are many reasons for implementing a new theorem prover
– especially in the cyber-physical systems domain. KeYmaera X
is designed as a platform for research on both automated and in-
teractive theorem proving specifically for hybrid dynamical sys-
tems. Designing and implementing new tactics languages, proof
construction GUIs, and other features is easier in a smaller sys-
tem with significantly fewer lines of code, and KeYmaera X was
specifically designed to support certain extensions (e.g., parallel
proof search, control engineering-centric user interfaces) that Coq
(for example) was not designed to support.

Proceeding from the premise that hybrid systems theorem prov-
ing benefits from a theorem proving system that is specifically
tailored to differential dynamic logics, the primary benefit of the
approach in this paper is that it is parsimonious with the meta-
theory of these logics. Both the syntax and semantics of LPdL are a
straightforward extension of the semantics of differential dynamic
logics.

The rationale for developing a custom theorem prover for dif-
ferential dynamic logics apply equally to all of the alternatives dis-
cussed in this section. The following discussions of particular alter-
natives focus on more specific comparisons.

Encoding in a Proof Assistant. One alternative is encoding Fig. 1
and Fig. 2 in a proof assistant such as Coq [16] or Isabelle [17].
The Uniform Substitution algorithm implemented in KeYmaera X
is constructive and is probably implementable in a proof assistant
for a higher order logic, so this approach is certainly possible. If the
proof assistant has proof terms, then those proof terms would serve
our goal of adding proof terms to dL. Furthermore, this approach
could be used to generate proof terms for proofs constructed in an
independently implemented theorem prover such as KeYmaera X
(e.g., by isolating a simulation of the operations in the KeYmaera X
core using constructions in a hypothetical dL library for Coq or
Isabelle).

The benefits of encoding dL in a proof assistant do not come
for free. To achieve any benefit from this embedding, we would
also need to formalize the soundness proof for dL within the proof
assistant. Soundness proofs for hybrid systems are difficult, so a
formalization of the soundness proof of dL would be greatly bene-
ficial. However, this is almost certainly not the path of least resis-
tance toward proof terms for dL because formalizing the soundness
proof for dL would require considerable effort.

Even given a formalization of the soundness proof for dL, the
benefit of a proof constructed in a proof assistant remains question-
able because the KeYmaera X core is small. For example, although
the Coq core is more thoroughly audited than the KeYmaera X
core, it is also far larger (the Coq core is approx. 20000 lines of
code and the KeYmaera X core is approx. 2000 lines).2

Logical Frameworks. Logical frameworks [9] provide a potential
counter-point to the above observation that formalizing the sound-
ness proof for dL would require considerable effort. Work toward
a mechanization of Standard ML in Twelf [18] demonstrates that
logical frameworks are particularly well-suited to reasoning about
binding [12]; this strength is relevant in the context of dL because
binding structure is at the heart of admissibility constraints on uni-
form substitutions. However, initial investigations suggest that the
binding structure of hybrid programs is rich enough that encoding
admissible uniform substitutions would require non-trivial effort.
Furthermore, uniform substitution is only the first (and likely eas-
iest) step of a mechanization of dL in Twelf, Beluga [19], etc. be-
cause obtaining soundness proofs would also require proving the
local soundness of the axioms in Fig. 2.

3. The Logic of Proofs for Differential Dynamic
Logic

This section presents the syntax and semantics for LPdL. Syntacti-
cally, the logic is the differential dynamic logic presented in [25],
augmented with formulas of the form e : φ (where φ is a dL for-
mula) whose intended meaning is that e serves as evidence for φ.
Semantically, LPdL extends the semantics of dL with meanings for
formulas of the form e : φ.

2 This argument is less strong for HOL Light [10] and Lean [5], both of
which have implementations whose size and complexity is comparable to
KeYmaera X.

The choice of proof terms presented in this section is motivated
by the typical structure of proofs in dL. Proofs in dL combine
equivalence/equational reasoning with uniform substitutions and
uniform renamings. For example, consider the proof of [x :=
0 ∪ x := 1]x ≥ 0 in Fig. 3. Each of the leafs of the proof is
either an axiom of dL or else a tautology of FOLR. These leafs
are obtained from the original problem by performing equivalence
rewriting, modus ponens, and identifying uniform substitutions
that translate the resulting subgoals into dL axioms. In this proof,
uniform renaming is not necessary; however, renaming would be
necessary for the formula [y := 0 ∪ y := 1]y ≥ 0 because the
axiom for symbolically executing a discrete assignment mentions
x instead of y.

3.1 Syntax
Definition 4 (Formulas). The formulas of LPdL are defined by
extending the inductive definition of dL formulas given in Def. 3
with formulas of the form e : φ, where φ is a formula of dL and e
ranges over proof terms (defined below).

Our definition of the grammar of LPdL formulas (e.g., the
inclusion of dL formulas) is parsimonious with the Justification
Logic tradition rather than the type theory tradition.

The formulas of LPdL as defined in Def. 4 augment the for-
mulas of dL with an additional connective e : φ. 3 This aug-
mentation strictly extends the grammar of dL. Formulas such as
1 = 1 ∧ 2 = 2 which do not contain proof terms remain for-
mulas of LPdL. However, grammatical constructions of the form
e : e′ : φ (and e : e′ : e′′ : φ, and so on) are not formulas of LPdL;
i.e., proof terms provide evidence only for dL derivations – not for
LPdL derivations. Although the authors are interested in extend-
ing LPdL to properly treat formulas of these forms, our immediate
motivations for explicitly representing proofs do not require such a
rich language.

Pure LPdL formulas are formulas that do not allow the use of
dL connectives (such as (e : φ) ∧ (d : φ)). Pure LPdL formula
either a formula of dL, or a formula of the form e : φ where e is a
proof term and φ is a formula of dL.

Example 3 (LPdL formulas and non-formulas). The following are
non-pure formulas of LPdL (where e, d are proof terms and φ, ψ
are dL formulas):

• (e : φ) ∧ (d : ψ)
• (e : φ)→ (d : ψ)
• [x := 0](j1=1 : 1 = 1)

whereas e : (φ ∧ ψ) is a pure formula of LPdL:

In most of this paper we are concerned only with pure LPdL
formulas, because these are the formulas that correspond to judge-
ments

e is a dL proof of φ
where φ is a formula of dL; i.e., pure LPdL formulas are just
proof certificates for dL derivations. In particular, our axioms and
proof rules focus only on the pure fragment of LPdL. It may be
useful to axiomatize non-pure LPdL in the future; only application
might be allowing the prover core to pass around multiple proven
results directly instead of having to bundle up proven results using
conjunctions. However, we leave these questions as future work
and instead focus on parsimoniously extending dL with certificates
for dL proofs.

A complete definition of the objects that may stand in for e
occupies the remainder of this subsection.

3 It is not misleading to think of : as a binary function mapping proofs
terms and dL formulas to LPdL formulas.

[∪]
[a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

US
[x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0 ∆

MP
[x := 0 ∪ x := 1]x ≥ 0

where ∆ =

[:=]
[x := t]p(t)↔ p(x)

US
[x := 0]x ≥ 0↔ 0 ≥ 0

R
0 ≥ 0

Prop
[x := 0]x ≥ 0↔ 0 ≥ 0→ [x := 0]x ≥ 0

MP
[x := 0]x ≥ 0

[:=]
[x := t]p(t)↔ p(x)

R
1 ≥ 0

MP, Prop, US
[x := 1]x ≥ 0

Prop
[x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0

Prop
([x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0)→ [x := 0 ∪ x := 1]x ≥ 0

Figure 3. A proof of [x := 0 ∪ x := 1]x ≥ 0 in the uniform substitution calculus of dL. The proof of ∆ is slightly abbreviated for
readability; the proof for the x := 1 case is very similar to the proof of the x := 0 case.

Definition 5 (Proof Terms). Proof terms are defined by this gram-
mar (with e, d as proof terms, c ranging over sets of proof con-
stants, σ as a uniform substitution, B as a uniform renaming, and
φ as dL formulas as defined in Def. 3).

e, d ::= cφ Proof Constants
| e ∧ d Conjunctions
| e • d Implicative Application
| e •← d | e •→ d Directional Equivalence Application
| σe |Be Uniform Substitutions and Renaming
| CTσe | CQσe | CEσe Equivalence/equational Reasoning

Proof terms are the syntactic objects of LPdL corresponding to
deductions in dL.

Atomic/Axiomatic Terms. Proof constants serve as evidence for
dL axioms and FOLR tautologies. In this paper, we consider two
sets of proof constants – iA where A is any dL axiom and jT
where T is any tautology of FOLR. We use cφ whenever we mean
to discuss both of these sets of proof constants.

The separation of atomic proof terms indexed by concrete ax-
ioms into disjoint sets is motivated by practical concerns that arise
when implementing a theorem prover for hybrid systems.

The first benefit of separating atomic proof terms into sets is a
clear separation between axiomatic and real arithmetic reasoning.
Although the first-order theory of real arithmetic is decidable, the
problem has extreme complexity. Furthermore, KeYmaera X (as
well as other theorem provers) that utilize decision procedures for
real arithmetic are typically sound only modulo the soundness of
an external implementation of the decision procedure being used.
Distinguishing computationally trivial appeals to axioms from pos-
sibly expensive appeals to arithmetic decision procedures isolates
a natural extension point for incorporating certificates of arithmetic
facts e.g., by extracting witnesses from an implementation of a Coq
implementation of the Cylindrical Algebraic Decomposition algo-
rithm [15] or by using approaches such as [29] that are amenable
to certificate generation). Isolating real arithmetic facts from ax-
iomatic facts also makes it very easy to identify appeals to FOLR
tautologies in proofs, which could be useful for identifying when
the reproducibility of a proof is going to depend upon possibly ex-
pensive appeals to a decision procedure.

The second benefit of separating atomic proof terms into dis-
joint sets is that it enables code-reuse when implementing con-
servative extensions of an already supported logic but also disal-
lows unsound combinations of logics. For example, dL contains
axioms that are unsound for its game-theoretic variant dGL [24] so
an implementation of a dGL theorem prover on top of KeYmaera X

should ensure that dGL proofs only make use of dL axioms that are
sound in dGL.4

Conjunctions. The ∧ operator allows for the creation of evidence
for conjunctive formulas. If e : φ and d : ψ then (e∧d) : φ∧ψ. This
connective is also not strictly necessary if dL contains appropriate
propositional axioms but is useful because many dL axioms contain
conjunctions. Conjunctions represent the exact structure of a proof,
so LPdL excludes the + operator found in some Justification Log-
ics ([3, Part II]) because we are interested only in single conclusion
proof systems. From an implementation perspective, the most in-
teresting multi-conclusion extensions are those that could serve as
a category of values for a proof search specification language ca-
pable of describing decidable but non-deterministic forward proof
search procedures.

Implications. The • operator allows the use of evidence of an
implication, and corresponds to the modus ponens proof rule. For
example, if e : ψ → φ and d : ψ then e • d : φ. This operator
corresponds to the application operator of the Logic of Proofs and
corresponds to application in the Simply Typed Lambda Calculus.

Equivalence Rewriting. The •← and •→ operators are similar to
the implication operator, but are used for equivalences instead of
implications. The subscript on the operator indicates the direction
in which the equivalence should be used. For example, if e : ψ ↔ φ
and d : φ then e•←d : ψ. The •← and •→ operators are not strictly
necessary because they can be replaced with axioms. If

i : (φ↔ ψ)→ (φ→ ψ),

e : φ↔ ψ, and
d : φ

then (i • e) • d : ψ. These operators are included because equiv-
alence rewriting is a fundamental and pervasive operation in ax-
iomatic proofs, so even the constant multiplier on the length of
proof terms is enough to motivate the addition of operators.

Substitution and Renaming. Uniform substitution and renaming
are essential parts of dL proofs and are witnessed by proof terms of
the form σe and Be, where σ and B are uniform substitutions and
renamings respectively. Uniform substitutions do not map variables
to variables, but variable renamings are necessary whenever a proof
contains variables that do not occur in axioms. For example, a

4 This motivation is informed by plans for future work; in this paper we
present a logic of proof terms for only dL.

proof of [a := 12]a = 12 ↔ 12 = 12 is just a uniform
renaming of x to a in the [:=] axiom. KeYmaera X allows explicit
uniform renamings during proving, and these explicit renamings
are captured by the B proof terms.

Equivalence and Equational Reasoning. The CTσ , CQσ , and
CEσ operators correspond to uniform substitution instances of the
contextual equation and equivalence proof rules of dL (CT, CQ, and
CE). For example, the proof term CT{c(·) 7→·2,f(·)7→b,g(·)7→a} serves
as evidence for the {c(·) 7→ ·2, f(·) 7→ a, g(·) 7→ b} uniform
substitution instance of the CT proof rule:

a = b

a2 = b2

3.2 Semantics
The semantics of LPdL formulas extends the semantics of the uni-
form substitution calculus given in Section 2.2. As in dL, interpre-
tations I in LPdL give meaning to program constants, function,
predicate and quantifier symbols [25].

Definition 6 (LPdL Semantics). The semantics of an LPdL for-
mula χ is defined with respect to an interpretation I as the subset
JχKI ⊆ S of states in which χ is true and is defined inductively as
follows (where iA, jT ranges over proof constants, e, d range over
proof terms, and φ, ψ range over dL formulas):

• JφKI = JφKIdL where J·KdL is the denotation of dL given in
[25]. The meaning of connectives ∧,¬,∃, [·], 〈·〉 is also as in
dL, e.g., Jϕ ∧ χKI = JϕKI ∩ JχKI

• JiA : AKI = S for dL axioms A
• JjT : T K = S for FOLR tautologies T
• Je∧d : φ∧ψKI = Je : φKI∩Jd : ψKI = {v ∈ S : v ∈ Je : φKI

and v ∈ Jd : ψKI}
• Je • d : φKI =

⋃
ψJe : (ψ → φ)KI ∩ Jd : ψKI

= {v ∈ S : v ∈ Je : (ψ → φ)KI and v ∈ Jd : ψKI for some
ψ}
• Je •← d : φKI =

⋃
ψJe : (φ↔ ψ)KI ∩ Jd : ψKI

= {v ∈ S : v ∈ Je : (φ ↔ ψ)KI and v ∈ Jd : ψKI for some
ψ}
• Je •→ d : φKI =

⋃
ψJe : (ψ ↔ φ)KI ∩ Jd : ψKI

= {v ∈ S : v ∈ Je : ψ ↔ φKI and v ∈ Jd : ψKI for some ψ}
• Jσe : σφKI = Je : φKI if σ is admissible for φ

= {v ∈ S : v ∈ Je : φKI and σ is admissible for φ}.
• JBe : BφKI = Je : φKI if B is a uniform renaming of φ

= {v ∈ S : v ∈ Je : φKI and B is a uniform renaming of φ}
• JCTσe : σ(c(f(x̄)) = c(g(x̄)))KI = Jσe : σ(f(x̄) = g(x̄))KI

• JCQσe : σ(p(f(x̄))↔ p(g(x̄)))KI =
Jσe : σ(f(x̄) = g(x̄))KI

• JCEσe : σ(C(p(x̄))↔ C(q(x̄)))KI =
Jσe : σ(p(x̄)↔ q(x̄))KI

Undefined cases are empty.5

Note that the meaning of e : φ is always either S or ∅.
Only LPdL formulas involving proper dL subformulas have state-
dependent truth.

We do not prove soundness in this paper; instead, we establish
a correctness result that is more useful in our context: whenever
e : φ is a theorem of LPdL, we can construct a dL proof of
φ, which implies that φ is valid. (The advantages of this result

5 E.g., J(e ∧ d) : φKI = ∅ whenever φ is not of the appropriate form.
Likewise for the other cases.

are discussed in the introduction and in later sections.) In this
section, we take a similar approach. Instead of establishing a direct
connection between the semantics and axioms and proof rules of
LPdL, we instead establish a projection from the semantics of
LPdL to the semantics of dL.

Theorem 1 (Correctness of Proof Term Valuation). Consider any
interpretation I , v ∈ S and dL formula φ. If v ∈ Je : φKILPdL then
v ∈ JφKIdL.

Note that Theorem 1 pertains only to pure LPdL formulas; i.e.,
LPdL formulas of the form e : φ where e is a proof term and φ is a
formula of dL.

Proof. The proof proceeds by induction on the structure of e, si-
multaneously for all φ.

Axiomatic Terms. Suppose v ∈ Jiψ : φKILPdL. By Def. 6, it must
be that φ is ψ and ψ is an axiom of dL. Therefore, φ is an axiom
of dL so by soundness of dL, JφKIdL = S. Finally, v ∈ S.

FOLR Tautology Terms. Suppose v ∈ Jjψ : φKILPdL. By Def. 6, it
must be that φ is ψ and ψ is a tautology of FOLR. Therefore,
φ is a tautology of FOLR so by soundness of dL, JφKIdL = S.
Finally, v ∈ S.

Case e ∧ d. Suppose v ∈ Je ∧ d : φKILPdL. Inspecting the cases of
Def. 6, it must be that

φ = ϕ ∧ ψ

for some ϕ,ψ such that

v ∈ Je : ϕKILPdL (1)

v ∈ Jd : ψKILPdL (2)

Applying the inductive hypothesis at (1) and (2), we have v ∈
JϕKIdL and v ∈ JψKIdL. Therefore, v ∈ JϕKIdL and v ∈ JψKIdL
from which it follows that

v ∈ JϕKIdL ∩ JψKIdL = Jϕ ∧ ψKIdL

by the definition of the semantics of dL [25].
Case e • d. Suppose v ∈ Je • d : φKILPdL. By Def. 6 we know that

v ∈ Je : ψ → φKILPdL
v ∈ Jd : ψKILPdL

for some ψ. Applying the inductive hypothesis to these facts
establishes

v ∈ Jψ → φKIdL
v ∈ JψKIdL

From these facts, a classical propositional encoding of ψ → φ,
and elementary theorems of set theory, we obtain that

v ∈ (JψKIdL)C ∪ JφKIdL

(where XC is the set complement S \X of X) which, because
v ∈ JψKIdL, implies v ∈ JφKIdL.

Case e •← d and e •→ d. Similar to e • d.
Case σe. Suppose that v ∈ Jσe : φKILPdL. Then by inspection of

the cases of Def. 6, φ = σ(φ′) and v ∈ Je : φ′KILPdL. Applying
the inductive hypothesis to this fact establishes v ∈ Jφ′KIdL. So
because σ is, by Def. 6, an admissible substitution for φ′ we
have v ∈ Jσ(φ′)KIdL = JφKIdL.

The remaining cases are similar.

3.3 Axioms and Proof Rules of the Logic of Proofs for
Differential Dynamic Logic

Axioms governing the construction of proof terms allow for the
derivation of proof terms that describe proofs by substitution, uni-
form renaming, uniform substitution, and appeals to axioms and
tautologies. This is sufficient to describe proofs constructed by the
uniform substitution calculus of dL, and by extension most proofs
constructed by the KeYmaera X theorem prover. The KeYmaera X
theorem prover also contains a propositional sequent calculus and
skolemization, so in practice some proofs constructed by KeY-
maera X may not have proof terms in LPdL. However, there exist
proof term calculi for propositional sequent calculi, so this paper
focuses on the portions of KeYmaera X proofs that do not yet have
an easily adaptable proof term calculus.

After stating the axioms and proof rules of LPdL in Def. 7,
we describe how each is used to construct proof terms for typical
constructions.

Unlike dL, LPdL does not use uniform substitutions. There-
fore, the objects described in the following definition are axiom
schemata and proof rules – not just formulas or pairs of formulas.

Definition 7 (Axioms of LPdL). The following are axioms of
LPdL, where ϕ,ψ range over LPdL formulas, and c, f, g are
function symbols and p, q are predicate symbols, andC a quantifier
symbol.

φ (dL Axiom)
iA : A (dL Constants)
jT : T (FOLR Constants)

e : φ d : ψ

(e ∧ d) : (φ ∧ ψ)
(And)

e : (φ→ ψ) d : φ

e • d : ψ
(Application)

e : (φ↔ ψ) d : φ

e •→ d : ψ
(Right Equivalence)

e : (φ↔ ψ) d : ψ

e •← d : φ
(Left Equivalence)

e : φ

σe : σ(φ)
(US Proof Term)

e : φ

Be : B(φ)
(Renaming)

σe : σ(f(x̄) = g(x̄))

CTσe : σ(c(f(x̄) = c(g(x̄)))
(CTσ)

σe : σ(f(x̄) = g(x̄))

CQσe : σ(p(f(x̄)↔ p(g(x̄)))
(CQσ)

σe : σ(p(x̄)↔ q(x̄))

CEσe : σ(C(p(x̄)↔ C(q(x̄)))
(CEσ)

and where the rules US Proof Term, CTσ , CQσ , and CEσ are
applicable only whenever σ is admissible for the dL formulas to
which it is applied, and only whenever σ has no free variables. The
set of free variables of a substitution is defined in [25]. The formula
φ in rule dL Axiom needs to be a dL formula provable in dL.

The axioms in Def. 7 correspond to the intuitive meanings for
proof terms given in Section 3.1.

Proof Constant Axioms. The axiomatization of dL is included
in LPdL in the form of including all provable dL formulas (rule
dL Axiom). Proof constants iA and jT internalize evidence for dL

axioms and FOLR tautologies. For example,

i[a;b]p(x̄)↔[a][b]p(x̄) : [a; b]p(x̄)↔ [a][b]p(x̄), and

jx≥0→x2≥0 : x ≥ 0→ x2 ≥ 0

are both axioms of LPdL. For brevity, we often use the names
of axioms as subscripts instead of the axioms themselves. For
example,

i[∪] : [a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b](x̄).

Conjunction Proof Rule. The And proof rule enables construc-
tion of compound proof terms that serve as evidence for conjunc-
tions. Constructing a proof term that allows for left and right pro-
jections of a conjunction is also possible using dL axioms and Ap-
plication axiom, so these are not included as primitives. Unlike dL,
proof term axioms and proof rules are schematic, so

d : x = y e : y = z

(d ∧ e) : x = y ∧ y = z

is a derivation in LPdL.

Application Proof Rules. The Application proof rule enables
construction of proof terms that correspond to the use of the Modus
Ponens rule in dL; for example,

d : p(x)→ q(x) e : p(x)

e • d : q(x)

is a derivation in LPdL. The Left Equivalence and Right Equiv-
alence rules are definable in terms of the Application rule at the
expense of more verbose proof terms.

Uniform Substitution Proof Rule. The US Proof Term axiom al-
lows the construction of evidence that appeals to uniform substi-
tutions. Similarly, uniform renaming is evidenced by Renaming. A
schematic sequent calculus for dL is definable using uniform sub-
stitutions [7] and proof terms can be assigned to each of these proof
rules. For example, the proof terms for the sequent calculus proof
rule

` [α]ϕ ` [β]ϕ

` [α ∪ β]ϕ

are σi[∪] •→ e : [α]ϕ ∧ [β]ϕ where e : [α ∪ β]ϕ and σ = {a 7→
α, b 7→ β, p(·) 7→ ϕ}.
Equivalence/Equational Proof Rules. The CTσ , CQσ , and CEσ
proof rules combine uniform substitutions with the proof rules CT,
CQ, and CE from dL.

Example 4 demonstrates how these axioms and proof rules are
combined with the axioms and uniform substitutions of dL to
construct witnesses for dL proofs by constructing a proof term
corresponding to the previous example.

4. Converting LPdL Proof Terms into dL Proofs
We say that `LPdL φ whenever there is a proof of φ in LPdL, and
we say that `dL φ whenever there is a proof of φ in dL.

Lemma 1 (Inversion). The following are facts about LPdL:

• If `LPdL iφ : ψ then φ is ψ and φ is an axiom of dL.
• If `LPdL jφ : ψ then φ is ψ and φ is a tautology of FOLR.
• If `LPdL e ∧ d : φ then φ is (χ ∧ ψ) where `LPdL e : χ and
`LPdL d : ψ.
• If `LPdL e • d : φ then `LPdL e : ψ → φ and `LPdL d : ψ for

some ψ.
• If `LPdL e •← d : φ then `LPdL e : φ↔ ψ and `LPdL d : ψ for

some ψ.
• If `LPdL e •→ d : φ then `LPdL e : ψ ↔ φ and `LPdL d : ψ for

some ψ.

dL Constants
i[∪]: [a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

US Proof Term
σ1i[∪]: [x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0

∆∧

e∧ : [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0
Left Equivalence

σ1i[∪] •← ((σ2i[:=] •← j0≥0) ∧ (σ3i[:=] •← j1≥0))︸ ︷︷ ︸
e∧

: [x := 0 ∪ x := 1]x ≥ 0

where ∆∧ is

i[:=]: [x := t]p(x)↔ p(t)

σ2i[:=]: [x := 0]x ≥ 0↔ x ≥ 0 j2 : 0 ≥ 0

σ2ii[:=] •← j2 : [x := 0]x ≥ 0

dL Constants
i[:=]: [x := t]p(x)↔ p(t)

US Proof Term
σ3i[:=]: [x := 1]x ≥ 0↔ x ≥ 0

FOLR Constants
j3 : 1 ≥ 0

Left Equivalence
σ3i[:=] •← j3 : [x := 1]x ≥ 0

And
((σ2i[:=] •← j0≥0) ∧ (σ3i[:=] •← j1≥0))︸ ︷︷ ︸

e∧

: [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0

Example 4 (A Simple Proof Term). A proof of

(σ1i[∪] •← ((σ2i[:=] •← j0≥0) ∧ (σ3i[:=] •← j1≥0))) : [x := 0 ∪ x := 1]x ≥ 0

where

σ1 ≡ {a 7→ x := 1, b 7→ x := 1, p(·) 7→ x ≥ 0}
σ2 ≡ {t 7→ 0, p(·) 7→ · ≥ 0}
σ3 ≡ {t 7→ 1, p(·) 7→ · ≥ 0}
i[∪] ≡ i[a∪b]p(x̄)↔[a]p(x̄)∧[b]p(x̄)

i[:=] ≡ i[x:=t]p(x)↔p(t)

is given above. Intuitively, this property states that if x nondeterministically takes on 0 or 1, then x ≥ 0. The proof proceeds by symbolic
decomposition of the hybrid program x := 0 ∪ x := 1 using axioms of dL. Uniform substitution instances of the relevant symbolic
decomposition axioms are necessary in order to complete the proof. Labels on the left side of the proof of ∆ are elided for readability, but
exactly match the labels on the right side.

• If `LPdL CTσe : φ then φ is σ(c(f(x̄)) = c(g(x̄))), `LPdL
σe : σ(f(x̄) = g(x̄)), and σ is admissible on all formulas to
which it is applied and FV (σ) = ∅.6
• If `LPdL CQσe : φ then φ is σ(p(f(x̄)) ↔ p(g(x̄))),
`LPdL σe : σ(f(x̄) = g(x̄)), and σ is admissible on all
formulas to which it is applied and FV (σ) = ∅.
• If `LPdL CEσe : φ then φ is σ(C(p(x̄)) ↔ C(q(x̄))),
`LPdL σe : σ(p(x̄) ↔ q(x̄)), and σ is admissible on all
formulas to which it is applied and FV (σ) = ∅.
• If `LPdL σe : φ then `LPdL e : φ′ and σ(φ′) = φ for some φ′

such that σ is admissible for φ′.
• If `LPdL Be : φ then `LPdL e : φ′ and B(φ′) = φ for some φ′.

Proof. The proof involves a straightforward induction involving
inspection of the conclusions of LPdL axioms.

Theorem 2 (Proof terms justify theorems). Let e be a proof term
and φ a dL formula. If `LPdL e : φ then `dL φ.

Proof. The proof involves the construction of a dL proof corre-
sponding to the proof term e. We proceed by induction on the struc-
ture of e.

Case iA. Suppose that `LPdL iA : φ. By Lemma 1, φ = A and is
an axiom of dL. Therefore, `dL φ.

Case jT . Suppose that `LPdL iA : φ. By Lemma 1, φ = A and is a
tautology of FOLR. Therefore, `dL φ.

6 The set, FV (σ), of free variables of a substitution σ is defined in [25]

Case e ∧ d. Suppose that e ∧ d : φ. By Lemma 1,

φ = χ ∧ ψ

and

`LPdL e : χ (3)
`LPdL d : ψ (4)

Applying the inductive hypothesis to (3) and (4) establishes that

`dL χ (5)
`dL ψ (6)

The schematic proof rule

(∧R)
ϕ Ω

ϕ ∧ Ω

where ϕ and Ω are any dL formulas that are derivable in dL
using the propositional tautology ϕ → Ω → ϕ ∧ Ω and MP.
From (5) and (6), andR derives `dL χ ∧ ψ.

Case e • d. Suppose that `LPdL e • d : φ. By Lemma 1,

`LPdLe : ψ → φ (7)
`LPdLd : ψ (8)

Applying the inductive hypothesis to (7) and (8) establishes that

`dLψ → φ (9)
`dLψ (10)

from which MP derives `dL φ.

Case e •→ d. Suppose `LPdL e •→ d : φ. By Lemma 1,

`LPdLe : ψ ↔ φ (11)
`LPdLd : ψ (12)

are provable in LPdL. Applying the inductive hypothesis to (11)
and (12) establishes

`dLψ ↔ φ (13)
`dLψ (14)

Note that
`dL (ψ ↔ φ)→ (ψ → φ)

has a proof in dL. With (13), MP , thus, derives `dL ψ → φ.
Applying MP once more to ψ → φ with (14) establishes that
`dL φ.

Case e •← d. Suppose `LPdL e •← d : φ. By Lemma 1,

`LPdLe : φ↔ ψ (15)
`LPdLd : ψ (16)

are provable in LPdL. Applying the inductive hypothesis to (15)
and (16) establishes

`dLφ↔ ψ (17)
`dLψ (18)

Note that
(φ↔ ψ)→ (ψ → φ)

has a proof in dL. From this fact and (17), it follows by the
Modus Ponens proof rule that `dL ψ → φ. Applying Modus
Ponens once more to this fact and (18) establishes that `dL φ.

Case CTσe. Suppose that `LPdL CTσe : φ. By Lemma 1,

φ = σ(c(f(x̄)) = c(g(x̄)))

where

`LPdL e : σ(f(x̄) = g(x̄)) (19)

and σ is admissible for f(x̄) = g(x̄). Applying the inductive
hypothesis to (19) establishes

`dL σ(f(x̄) = g(x̄)) (20)

Also by Lemma 1, σ is admissible on this formula andFV (σ) =
∅. Therefore, [25, Theorem 25] establishes that the σ uni-
form substitution instance of CT is sound in dL and so `dL
σ(c(f(x̄)) = c(g(x̄))) by the σ uniform substitution instance
of CT.

Case CQσe. Suppose that `LPdL CQσe : φ. By Lemma 1,

φ = σ(p(f(x̄))↔ p(g(x̄)))

where

`LPdL e : σ(f(x̄) = g(x̄)) (21)

and σ is admissible for f(x̄) = g(x̄). Applying the inductive
hypothesis to (21) establishes

`dL σ(f(x̄) = g(x̄)) (22)

Also by Lemma 1, σ is admissible on this formula andFV (σ) =
∅. Therefore, [25, Theorem 25] establishes that the σ uni-
form substitution instance of CQ is sound in dL and so `dL
σ(p(f(x̄)) ↔ p(g(x̄))) by the σ uniform substitution instance
of CQ.

Case CEσe. Suppose that `LPdL CEσe : φ. By Lemma 1,

φ = σ(C(p(x̄))↔ C(q(x̄)))

where

`LPdL e : σ(p(x̄)↔ q(x̄)) (23)

and σ is admissible for p(x̄) ↔ q(x̄). Applying the inductive
hypothesis to (23) establishes

`dL σ(p(x̄)↔ q(x̄)) (24)

Also by Lemma 1, σ is admissible on this formula andFV (σ) =
∅. Therefore, [25, Theorem 25] establishes that the σ uni-
form substitution instance of CE is sound in dL and so `dL
σ(C(p(x̄))↔ C(q(x̄))) by the σ uniform substitution instance
of CE.

Case σe. Suppose that `LPdL σe : φ. By Lemma 1, φ = σ(φ′)
and `LPdL e : φ′ for some φ′. The induction hypothesis for the
smaller proof term e gives `dL φ′. Therefore, `dL σ(φ′) (i.e.,
φ) is provable by US.

Case Be. Similar to the case for σe.

The fact that LPdL is sound with respect to the semantics of dL
under proof term erasure is a corollary of this theorem.

Corollary 1 (Validity of Evident Formulas). If `LPdL e : φ then
JφKIdL = S where S is the set of all states.

Proof. By Theorem 2, `LPdL e : φ implies `dL φ so φ is valid. Note
that dL is sound, so JφKIdL = S. By Def. 6, JφKILPdL = JφKIdL =
S.

5. Checking Proof Terms Using Truth-Preserving
Transformations

KeYmaera X implements the uniform substitution calculus of
differential dynamic logic. The soundness-critical core of KeY-
maera X contains a set of truth-preserving operations on dL for-
mulas; these operations correspond to the axioms and proof rules
of dL. Provable objects are the closest that KeYmaera X comes
to proof certificates. A Provable is an object with a goal and a
sequence of remaining subgoals, each of which is a sequent. A
KeYmaera X proof certificate for a formula ϕ is a Provable object
with no remaining subgoals and ` ϕ as its goal. Provable objects
may only be created by the soundness-critical core of KeYmaera X,
so they are guaranteed to be constructed via a sequence of truth-
preserving operations such as proof rules, axioms, or substitutions.
However, a proof certificate does not record the actual sequence
of truth-preserving operations through which it is produced. While
memory-efficient, this state of affairs is less than ideal for reasons
that were enumerated in the introduction.

Fortunately, adding proof terms to KeYmaera X is relatively
simple7 because LPdL is in every way – syntactically, semantically,
and axiomatically – parsimonious with dL. We are therefore able to
augment KeYmaera X with a proof term checker without making
any changes to the soundness-critical core.

The proof of Theorem 2 was written so that it suggests a proce-
dure for proof term checking. The proof could have exploited com-
pleteness results at several points. Instead, we opted for explicitly
constructing a syntactic dL proof. For this reason, an LPdL proof
term checker can follow the structure of the proof of Theorem 2 –
for each component of a proof term, the proof term checker con-
structs the sequence of truth-preserving operations described in the
proof of Theorem 2. These truth-preserving operations are then ex-
ecuted by the KeYmaera X core. If each operation succeeds (e.g.,
no clashes occur during uniform substitutions), then the proof term
checker returns true.

There are a few caveats. The inversion lemma relies on the exis-
tence of certain formulas; these formulas must be inferred automat-
ically, or else proof terms must be augmented with additional anno-

7 The proof term checker is implemented in KeYmaera X 4.0b2 in Scala in
edu.cmu.cs.ls.keymaerax.pt.ProofChecker

tations. Our current ongoing implementation opts for the latter. Ad-
ditionally, in the proof of Theorem 2, there are some points where
the truth of a particular theorem is asserting (e.g., via soundness).
In each of these cases, KeYmaera X has either a tactic or an extra
proof rule that provides exactly the required truth-preserving trans-
formation. For example, the keymaerax.TacticLibrary.AndR
tactic of KeYmaera X performs the action of the AndR schema ref-
erenced in the e∧d case. The σ instances of CT, CQ, and CE (which
are guaranteed to be sound by [25, Theorem 25]) that we appeal to
in the CTσe, CQσe, and CEσe cases also have corresponding tac-
tics in KeYmaera X.

5.1 Future Work
Although the proof term checker for KeYmaera X demonstrates
the utility of LPdL, there are several avenues for future work. First,
KeYmaera X does not currently provide a mechanism for generat-
ing proof terms from proof search procedures – users must man-
ually write down proof terms to be checked. However, we believe
it will be easy to argument the KeYmaera X tactic language inter-
preter with a mechanism that constructs proof terms in tandem with
the truth-preserving operations it executes on Provables. This ex-
tension – which we leave as future work – would add generation of
proof terms to KeYmaera X. Furthermore, the existence properties
stated in the inversion lemma require inference that is not currently
implemented; instead, users of the proof term checker must anno-
tate implicational and equivalence rewriting.

6. Related Work
Logics containing explicit representations of proofs have a storied
place in the history of mathematical logic and computer science
The BHK semantics for intuitionistic logic is one early and promi-
nent example. Type-theoretic theorem provers such as Coq [16] use
proof terms as explicit notions of evidence. Conversely, differential
dynamic logic has proved to be an excellent setting for verifying
complex hybrid dynamical systems [30].

The approach taken in this paper is motivated primarily by prag-
matic concerns related to the construction of certified software con-
trollers for cyber-physical systems. We are particularly interested
in developing a notion of evidence that is easy to add to existing
theorem provers for differential dynamic logic (or other dynamic
logics). For this reason, we take a logic with roots in the modal
logic tradition – the Logic of Proofs [4] – as our point of departure
with existing work.

The syntactic restriction placed on formulas containing proof
terms is perhaps the most a significant difference between LPdL
and modal logics with notions of evidence. In LPdL, it is not possi-
ble to construct a term of the form e : e′ : φ. For this reason, LPdL
is – in a qualitative sense – considerably less expressive than what
one might expect from a full logic of proofs for hybrid systems.
However, our concern in this paper is with modeling deductions in
dL, rather than with studying provability in the context of hybrid
dynamical systems.

LPdL contains several mechanisms for performing contextual
equivalence and equational rewriting. There exist many logics and
calculi with primitives for this style of rewriting [1, 31]. Effortless
rewriting of deeply nested formulas is a major benefit of Hilbert-
style logics, but comes at the cost of less structured proofs.

7. Conclusions
Explicit notions of evidence provide a clean separation between
proof checking and proof search and enable analyses that crucially
depend upon an interrogation of the structure of proofs. The Logic
of Proofs for Differential Dynamic Logic demonstrates that it is
possible to construct a calculus of proof terms on top of an exist-

ing theorem prover. Our preliminary work on synthesizing certi-
fied fall-back controllers for safety-critical systems demonstrates
that explicit representations of proofs enable principled solutions
to problems that would otherwise require ad-hoc and soundness-
critical analyses.

Acknowledgements. We thank the members of the Logical Sys-
tems Lab at Carnegie Mellon University for helpful discussions re-
lated to this work. We also thank the anonymous reviewers for their
suggestions and comments.

This research was sponsored by the National Science Foun-
dation under grant number CNS-1054246 and the Department of
Transportation under grant number DTRT12GUTC11 and the Fu-
ture of Life Institute (futureoflife.org) FLI-RFP-AI1 program, grant
#2015-143867. The views and conclusions contained in this docu-
ment are those of the author and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

References
[1] R. Alenda, N. Olivetti, and G. L. Pozzato. Nested Sequent Calculi for

Conditional Logics. In L. Fariñas del Cerro, A. Herzig, and J. Mengin,
editors, Logics in Artificial Intelligence, volume 7519 of Lecture Notes
in Computer Science, pages 14–27. Springer-Verlag, 2012.

[2] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid Au-
tomata: An Algorithmic Approach to the Specification and Verifica-
tion of Hybrid Systems. In R. L. Grossman, A. Nerode, A. P. Ravn,
and H. Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes
in Computer Science, pages 209–229. spv, 1992.

[3] S. Artemov and L. Beklemishev. Provability Logic. In D. Gabbay
and F. Guenthner, editors, Handbook of Philosophical Logic, 2nd
Edition, volume 13 of Handbook of Philosophical Logic, pages 189–
360. Springer Netherlands, 2005.

[4] S. N. Artemov. Operational modal logic. Technical Report MSI 9529,
Cornell University, 1995.

[5] L. M. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer.
The Lean Theorem Prover (System Description). In Automated De-
duction - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, pages
378–388, 2015.

[6] M. Fitting. The logic of proofs, semantically. Annals of Pure and
Applied Logic, 132(1):1 – 25, 2005.

[7] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer. KeYmaera
X: An axiomatic tactical theorem prover for hybrid systems. In A. P.
Felty and A. Middeldorp, editors, CADE, volume 9195 of LNCS,
pages 527–538. Springer, 2015.

[8] N. Fulton and A. Platzer. A logic of proofs for differential dynamic
logic: Tech report. Technical Report CMU-CS-15-143, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, 2015.

[9] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining
Logics. J. ACM, 40(1):143–184, Jan. 1993.

[10] J. Harrison. HOL light: A tutorial introduction. In Formal Methods
in Computer-Aided Design, First International Conference, FMCAD
’96, Palo Alto, California, USA, November 6-8, 1996, Proceedings,
pages 265–269, 1996.

[11] J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner, A. Schmidt,
and E. Z. A. Platzer. A formally verified hybrid system for the
next-generation airborne collision avoidance system. In C. Baier and
C. Tinelli, editors, TACAS, LNCS. Springer, 2015.

[12] D. K. Lee, K. Crary, and R. Harper. Towards a Mechanized Metathe-
ory of Standard ML. In Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’07, pages 173–184, New York, NY, USA, 2007. ACM.

[13] S. M. Loos, A. Platzer, and L. Nistor. Adaptive cruise control: Hybrid,
distributed, and now formally verified. In M. Butler and W. Schulte,
editors, FM, volume 6664 of LNCS, pages 42–56. Springer, 2011.

[14] S. M. Loos, D. W. Renshaw, and A. Platzer. Formal verification of
distributed aircraft controllers. In C. Belta and F. Ivancic, editors,
HSCC, pages 125–130. ACM, 2013.

[15] A. Mahboubi. Programming and certifying the cad algorithm inside
the coq system. In Mathematics, Algorithms, Proofs, volume 05021 of
Dagstuhl Seminar Proceedings, Schloss Dagstuhl, 2005.

[16] The Coq development team. The Coq proof assistant reference man-
ual, 2004. Version 8.0.

[17] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[18] F. Pfenning and C. Schürmann. System description: Twelf a meta-
logical framework for deductive systems. In Automated Deduction
CADE-16, volume 1632 of Lecture Notes in Computer Science, pages
202–206. Springer Berlin Heidelberg, 1999.

[19] B. Pientka and J. Dunfield. Beluga: A framework for programming
and reasoning with deductive systems (system description). In Int’l
Joint Conference on Automated Reasoning (IJCAR 2010), pages 15–
21, July 2010.

[20] A. Platzer. Differential dynamic logic for verifying parametric hybrid
systems. In N. Olivetti, editor, TABLEAUX, volume 4548 of LNCS,
pages 216–232. Springer, 2007.

[21] A. Platzer. Differential dynamic logic for hybrid systems. J. Autom.
Reas., 41(2):143–189, 2008.

[22] A. Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Springer, Heidelberg, 2010.

[23] A. Platzer. Logics of dynamical systems. In LICS, pages 13–24. IEEE,
2012.

[24] A. Platzer. Differential game logic. ACM Trans. Comput. Log.,
17(1):1:1–1:51, 2015.

[25] A. Platzer. A uniform substitution calculus for differential dynamic
logic. In A. P. Felty and A. Middeldorp, editors, CADE, volume 9195
of LNCS, pages 467–481. Springer, 2015.

[26] A. Platzer and E. M. Clarke. Formal verification of curved flight
collision avoidance maneuvers: A case study. In A. Cavalcanti
and D. Dams, editors, FM, volume 5850 of LNCS, pages 547–562.
Springer, 2009.

[27] A. Platzer and J.-D. Quesel. KeYmaera: A hybrid theorem prover
for hybrid systems. In A. Armando, P. Baumgartner, and G. Dowek,
editors, IJCAR, volume 5195 of LNCS, pages 171–178. Springer,
2008.

[28] A. Platzer and J.-D. Quesel. European Train Control System: A case
study in formal verification. In K. Breitman and A. Cavalcanti, editors,
ICFEM, volume 5885 of LNCS, pages 246–265. Springer, 2009.

[29] A. Platzer, J.-D. Quesel, and P. Rümmer. Real world verification. In
R. A. Schmidt, editor, CADE, volume 5663 of LNCS, pages 485–501.
Springer, 2009.

[30] J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, and A. Platzer. How to
model and prove hybrid systems with KeYmaera: A tutorial on safety.
2015.

[31] B. Woltzenlogel Paleo. Contextual natural deduction. In S. Artemov
and A. Nerode, editors, Logical Foundations of Computer Science,
volume 7734 of Lecture Notes in Computer Science, pages 372–386.
Springer Berlin Heidelberg, 2013.

	Introduction
	Background
	Modeling Cyber-Physical Systems Using Hybrid Programs
	The Uniform Substitution Calculus of Differential Dynamic Logic
	Semantics of
	Axioms of

	Uniform Substitutions
	Comparison with Other Approaches

	The Logic of Proofs for Differential Dynamic Logic
	Syntax
	Semantics
	Axioms and Proof Rules of the Logic of Proofs for Differential Dynamic Logic

	Converting Proof Terms into Proofs
	Checking Proof Terms Using Truth-Preserving Transformations
	Future Work

	Related Work
	Conclusions

